
A Persistent Lock-Free Queue for Non-Volatile Memory
Michal Friedman

Technion, Israel
michal.f@cs.technion.ac.il

Maurice Herlihy
Brown University, USA
mph@cs.brown.edu

Virendra Marathe
Oracle Labs, USA

virendra.marathe@oracle.com

Erez Petrank
Technion, Israel

erez@cs.technion.ac.il

Abstract
Non-volatile memory is expected to coexist with (or even
displace) volatile DRAM for main memory in upcoming ar-
chitectures. This has led to increasing interest in the problem
of designing and specifying durable data structures that can
recover from system crashes. Data structures may be designed
to satisfy stricter or weaker durability guarantees to provide
a balance between the strength of the provided guarantees
and performance overhead. This paper proposes three novel
implementations of a concurrent lock-free queue. These im-
plementations illustrate algorithmic challenges in building
persistent lock-free data structures with different levels of
durability guarantees. In presenting these challenges, the pro-
posed algorithmic designs, and the different durability guaran-
tees, we hope to shed light on ways to build a wide variety of
durable data structures. We implemented the various designs
and compared their performance overhead to a simple queue
design for standard (volatile) memory.

CCS Concepts • Computing methodologies Shared
memory algorithms; Concurrent algorithms;

Keywords Non-volatile Memory, Concurrent Data Struc-
tures, Non-blocking, Lock-free

ACM Reference Format:
Michal Friedman, Maurice Herlihy, Virendra Marathe, and Erez
Petrank. 2018. A Persistent Lock-Free Queue for Non-Volatile Mem-
ory. In PPoPP ’18: PPoPP ’18: 23nd ACM SIGPLAN Symposium

This work was supported by the United States - Israel Binational Science
Foundation (BSF) grant No. 2012171. Maurice Herlihy was supported by
NSF grant 1331141.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
PPoPP ’18, February 24–28, 2018, Vienna, Austria
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-4982-6/18/02. . . $15.00
https://doi.org/10.1145/3178487.3178490

on Principles and Practice of Parallel Programming, February 24–
28, 2018, Vienna, Austria. ACM, New York, NY, USA, 13 pages.
https://doi.org/10.1145/3178487.3178490

1 Introduction
Memory is said to be non-volatile if it does not lose its con-
tents after a system crash. Non-volatile memory is soon ex-
pected to co-exist with or even displace volatile DRAM for
main memory (but not caches or registers) in many architec-
tures. This has led to increasing interest in the problem of
designing and specifying durable data structures, that is, data
structures whose state can be recovered after a system crash.

A major challenge in designing durable data structures
is that caches and registers are expected to remain volatile.
Thus, the state of main memory following a crash may be
inconsistent, missing all previous writes to the data structure
that were present in the cache but not yet written into the
main memory. Dealing with arbitrary missing words after a
crash requires non-trivial data structure algorithms. These
algorithms must guarantee that key data does get written to
main memory (without incurring too much overhead), thus
making it possible to restore the data structure to a consistent
state.

It would be interesting to know whether libraries of highly
optimized, high performance persistent data structures [21]
can be built using ad hoc techniques informed by the data
structure architecture and semantics. Previous work focuses
solely on B-tree implementations [5, 6, 25, 32]. The interest
in B-trees is natural given their prevalence in file system and
database implementations. However, other foundational data
structures are also used in application domains that care about
persistence, e.g., hash tables in key-value stores [10, 29, 30]
and persistent message queues [28, 31, 34]. Since traditional
storage media have been block-based, all these applications
persist these data structures by marshaling them to a block-
based format. Doing so involves non-trivial overhead that
was dwarfed by the high cost of disk access. As a result, the
in-memory representation and on-disk (-SSD) representation
of these data structures are quite different. Byte-addressable
persistent memory can be used to create a unified persistent
representation. As far as we know, no previous work attempts
to build highly concurrent, nonblocking data structures, opti-
mized for persistent memory.

28

https://doi.org/10.1145/3178487.3178490
https://doi.org/10.1145/3178487.3178490
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3178487.3178490&domain=pdf&date_stamp=2018-02-10

PPoPP ’18, February 24–28, 2018, Vienna, Austria Michal Friedman, Maurice Herlihy, Virendra Marathe, and Erez Petrank

In order to strive for high-performance, crash-resilient soft-
ware on non-volatile memories, we propose to look at modern,
highly-concurrent data structures, such as the ones used in
java.util.concurrent, and enhance them to work with non-
volatile memories. Designing such concurrent data structures
for upcoming non-volatile memories requires meeting the
combined challenge of high concurrency and non-volatile
durability.

We study these challenges by designing a durable version
of the lock-free concurrent queue data structure of Michael
and Scott [24], which also serves as the base algorithm for the
queue in java.util.concurrent. This concurrent data structure
is complicated enough to demonstrate the challenges raised
by concurrent durable data structures, and simple enough to
demonstrate solutions. Careful thought is needed to define
what it should mean for a concurrent structure to be correct
and durable. Can the effects of operations in progress at the
time of a crash be lost? What about operations that completed
before the crash, or dependencies that span multiple structures
(e.g., popping an element from one structure and pushing it
into another)?

In the absence of durability concerns, linearizability [15] is
perhaps the most common correctness condition for concur-
rent objects: each operation appears to “take effect” instanta-
neously at some point between its invocation and response.
Linearizability is attractive because (unlike, say, sequential
consistency) it is compositional: the joint execution of two
(or more) linearizable data structures is itself linearizable.

Various definitions were proposed to formalize durabil-
ity, e.g., [2, 9, 13, 17, 27]. In this paper we adopt and work
with the definition of linearizable durability by Izraelevitz et
al. [17]. Informally, durable linearizability guarantees that the
state of a data structure following a crash reflects a consis-
tent subhistory of the operations that actually occurred. This
subhistory includes all operations that completed before the
crash, and may or may not include operations in progress
when the crash occurred. The main tool for achieving durable
linearizability for a concurrent data structure is the use of ex-
plicit instructions that force volatile cached data to be written
to non-volatile memory. While such persistence barrier in-
structions enforce correctness, they also carry a performance
cost and their use should be minimized: forcing data from
caches into non-volatile memory can take hundreds of cycles.

Durable linearizability is compositional: the composition of
two durably linearizable objects is itself durably linearizable.
Nevertheless, durable linearizability may be expensive, requir-
ing frequent persistence barriers. An alternative, weaker con-
dition is buffered durable linearizability. Informally, this con-
dition guarantees that the state of the object following a crash
reflects a consistent subhistory of the operations that actually
occurred, but this subhistory need not include all operations
that completed before the crash. Buffered durable linearizabil-
ity is potentially more efficient than durable linearizability,
because it does not require such frequent persistence fences.

Unfortunately however, buffered durable linearizability is
not compositional: the composition of two buffered durably
linearizable data structures is not itself buffered durably lin-
earizable.

To synchronize buffered durably linearizable objects, a
specific linearizable operation, sync(), can be issued to force
a single-object persistence barrier: a call to an object’s sync()
method renders durable all that object’s operations completed
before the call, although operations concurrently with the call
may or may not be rendered durable. The sync() method is
provided by the data structure and can be used to synchronize
a safe (manual) execution of two (or more) data structures
concurrently.

Our first contribution is the proposal of three novel designs
of durable concurrent queues. It is easy to obtain a durable
linearizable queue by adding many persistence barrier opera-
tions automatically. But, in general, the obtained performance
can be very low. In this paper, we attempt to minimize the
overhead and still achieve robustness to crashes. The first
implementation, denoted durable queue, provides durable
linearization. The second implementation, denoted log queue,
provides durable linearization, as well as an additional prop-
erty that we discuss next. The third implementation, denoted
relaxed queue, provides buffered durable linearizability with
an implementation of a sync() operation.

When crashes occur during an execution, it is often difficult
to tell which operations were executed and which operations
failed to execute. Durable linearizability guarantees the com-
pletion of all operations that were executed before a crash but
does not provide a mechanism to determine whether an oper-
ation that executed concurrently with a crash was eventually
executed. A persistent queue is not itself sufficient for pro-
gram recovery. One needs the larger context, and the ability,
upon recovery, to determine how much has been executed so
far. Without the ability to distinguish completed operations
from lost operations, it would be difficult to recover the entire
program, because in practice it is often important to execute
each operation exactly once.

In this paper we enable a more robust use of the queue,
by defining a new (natural) notion of detectable execution. A
data structure provides detectable execution if it is possible to
tell at the end of a recovery phase whether a specific operation
was executed. The log queue provides durable linearization
and detectable execution. If the program that uses the queue
follows a similar procedure for detecting execution, then it is
possible to tell how much of the execution has completed on
recovery from a crash, and program recovery at higher level
becomes possible.

In the course of proving the proposed algorithms, we dis-
covered an alternative definition of durable linearizability that
was easier for us to work with. We provide this definition, as
well as a proof that it is equivalent to the original definition
of durable linearizability in Section 3.

29

A Persistent Lock-FreeQueue for Non-Volatile Memory PPoPP ’18, February 24–28, 2018, Vienna, Austria

The queue is a fundamental data structure that will find
uses in future applications optimized for persistent mem-
ory. As mentioned above, several existing messaging systems
use a FIFO queue at their core and could benefit from high-
performance queue for non-volatile memories. For this study,
we chose to extend Michael and Scott’s queue due to its porta-
bility, simplicity and performance. There exist faster queues
that employ the fetch&add instruction[26, 35], but they are
not portable to platforms that do not support this instruction
(e.g., SPARC), and they are also significantly more compli-
cated.

We have implemented the three queue designs and mea-
sured their performance. As expected, implementations that
provide durable linearization have a noticeable cost. Interest-
ingly, however, implementations providing detectable execu-
tion do not add significant overhead over durable linearization
and may be worthwhile in this case. Also as expected, imple-
mentations that provide only buffered durable linearizability
obtain good performance when the sync() method is invoked
infrequently.

The rest of this paper is organized as follows. Section 2
presents definitions, discusses the setting, and reviews previ-
ous work. Section 3 offers an alternative definition to previous
works. Section 4 provides an overview of the three queue ver-
sions. We provide the details of the durable queue in Section 5,
the details of the other queues appear in the full version of this
paper [11]. The experimental evaluation for all three queues
is presented in Section 6. Section 7 discusses related work
and Section 8 concludes. A mechanism for memory manage-
ment is presented in the full version of this paper [11], as well
as additional measurements, and a correctness proof for the
durable queue.

2 Preliminaries
In this section we present some definitions and recall relevant
previous work. A standard notation for linearizability and
histories appears for completeness in the full version of this
paper [11].

2.1 Execution and Durability
We extend the standard notion of execution to also reflect the
transfer of data from the cache to memory.

Definition 2.1. NVM view. An NVM view at time t is the
content of the non-volatile memory at time t.

The NVM content consists of data that resides on the non-
volatile memory and persists through a crash.

Definition 2.2. Configuration. A configuration is an instan-
taneous snapshot of the system describing the value of all
local and shared variables as well as the program counter of
each thread. In addition, the configuration would describe for
each variable its value in the cache (if it exists) and its value
in the NVM view.

In our algorithms, we consider flush instructions that flush
the content of a cache line to the NVM. A flush can also
occur implicitly by hardware executing a cache line eviction.
To simplify the analysis of our algorithms, it is useful to
explicitly include in the execution the transfer of data from
the cache to the memory.

Definition 2.3. (Extended) Computation step. A computa-
tion step is a thread’s local step that reads or writes a thread’s
own local variables, a shared-memory access that accesses the
shared objects, an invocation of a method, or a response. In
addition to standard execution steps that access local or shared
variables, we also explicitly consider a flush of a cache line
from the cache to the NVM as a step in the execution. This
step can be triggered explicitly by a specific thread executing
a flush or implicitly by the hardware that evicts cache lines.
We assume each step is atomic. Crashes may be considered
as steps as well, which are done by the hardware.

We assume that writes of threads are to volatile cache. A
write to address A appears in NVM only after its cache line is
flushed to the NVM (in the execution).

Definition 2.4. (Extended) Execution. An execution consists
of an alternating sequence of configurations and computation
steps, starting with the initial configuration where the shared
variables are initialized with predetermined initial values in
the NVM. An execution is legal if:

1. Every thread follows its algorithm in the subsequence
consisting of the steps it performs.

2. Every shared object behaves according to its sequential
specification in the subsequence of steps that access it.

3. The NVM content in each configuration contains ex-
actly its initial values updated by all previous flush
steps in the execution so far.

Note that, as in Izraelevitz et al. [17], crashes are con-
sidered legal steps and the crash events partition an execu-
tion as E = E0C1E1C2...Ec−1CcEc, where c is the number of
crash events in E. Ci denotes the i-th crash event, and ops(E)
denotes the sub-execution containing all events other than
crashes. Note that ops(Ei) = Ei for all 0 <= i <= c. Follow-
ing to Izraelevitz et al. [17], we call the sub-execution of Ei
the i-th era of E.

In the rest of this paper, whenever we mention an execution,
we refer to this extended notion.

2.2 Durable Linearizability
We start by recalling notations required to define lineariz-
ability and the extend to durable linearizability. A response
matches an invocation if they have the same object and thread.
A method call in a history H is a pair consisting of an invoca-
tion and the next matching response.

A method call m0 precedes a method call m1 in history
H if m0 finished before m1 started: that is, m0’s response
event occurs before m1’s invocation event in H. Precedence

30

PPoPP ’18, February 24–28, 2018, Vienna, Austria Michal Friedman, Maurice Herlihy, Virendra Marathe, and Erez Petrank

defines a partial order on the method calls of H: m0 ≺H m1.
A consistent cut of a history H is a subhistory G ⊆ H such
that, if m1 is in G, and m0 ≺H m1, then m0 is also in G.

An invocation is pending in H if no matching response
follows the invocation. The history complete(H) is the exten-
sion of H with all matching responses to pending invocations
appended in the end. We use trunc(H), to denote the set of
histories that can be generated from H by removing some of
the pending invocations.

A history H is sequential if the first event of H is an in-
vocation, and each invocation, except possibly the last, is
immediately followed by a matching response.

Definition 2.5. Linearizablility. For history H, and partial
order ≺ extending ≺H , H is linearizable if there exists a
complete(trunc(H)), H ′, and there is a legal sequential history
S, with no pending invocations, such that

L1 complete(trunc(H)) is equivalent to S, and
L2 if method call m0 ≺H ′ m1, then m0 ≺S m1 in S.

We refer to S as a ≺-linearization of H.
An object is durably linearizable if, when its state reflects a

linearizable history H, a crash followed by recovery leaves the
object in a state reflecting a consistent cut H ′ of H such that
(1) ops(H ′) is linearizable, and (2) every complete operation
of H appears in H ′. Izraelevitz et al. [17] show that durable
linearizability is compositional.

We now move to defining buffered durable linearizability.
Let us stipulate that each object provides a sync() method,
which allows a caller make sure that operations completed
prior to the sync() are made persistent before operations that
follow the sync(). An object is buffered durably linearizable
if, when its state reflects a linearizable history H, a crash
followed by recovery leaves the object in a state reflecting a
consistent cut H ′ of H such that (1) H ′ is linearizable, and (2)
every completed sync() operation of H appears in H ′. Buffered
durable linearizability is not compositional. For example,
suppose a thread dequeues value x from p, and then enqueues
x on q, where p and q are distinct buffered durably linearizable
FIFO queues. Following a crash, the thread might find two
copies of x, one in each queue, while if the composition of the
two queues were buffered durably linearizable, the recovering
thread might find x in p but not q, or in q but not p, or in
neither, but never in both. We refer the reader to [17] for a
more complete discussion and motivation for this definition.

2.3 Detectable Execution
A caller of a data structure operation often needs to be able to
tell whether an operation has executed even when a crash oc-
curs. Imagine an operation that adds money to a bank account,
or an operation that places an order for a car. One would like
to know that such operations execute exactly once. A typical
execution scenario is one where a thread has a durable list of
operations to execute and it executes these operations one by
one. Upon recovery from a crash, the thread needs to know

which of its data structure updates were executed. Providing
a mechanism to determine whether an operation completed
during a crash is therefore beneficial.

We say that a data structure provides detectable execution
if it provides a mechanism that, upon recovery from a crash,
makes it possible to tell whether each operation executed
while the crash occurred was completed or aborted.

In practice, an implementation of such a mechanism can
take the following form. An announcement array (similar to
[14]) will hold an entry for each thread in which the thread
announces an intention to execute an operation, and provides
space for a recovery mechanism to write the operation result.
Upon recovery from a crash, the recovery process will set
a flag in each such entry specifying whether the intended
operation was completed, and deliver the result, if relevant.
The log queue, proposed in this paper, provides detectable
execution.

2.4 Hardware Instructions for Persistence
In the algorithms presented in this paper, we use a FLUSH
instruction that receives a memory address and flushes the
content of this address (together with its entire cache line)
to the memory, making it persistent. On an Intel platform
this translates to two instructions: CLFLUSH, SFENCE. It has
recently been shown that CLFLUSH has store semantics as far
as memory consistency is concerned (see page 710 of [16]),
which guarantees that no previous stores will be executed
after the CLFLUSH execution. The SFENCE instruction guar-
antees that the CLFLUSH instruction is globally visible before
any store instruction that follows the SFENCE instruction in
program order becomes globally visible.

2.5 The MS Queue
Our constructions extend Michael and Scott’s queue [24]
(denoted the MS queue). As explained in the introduction,
we chose this queue because it is highly portable (it only
uses the CAS instruction), it is used in the Java concurrency
library, and it is adequately complex for a study of durable
data structures.

The MS queue is built on an underlying linked-list in which
references to the head and tail are held, called, respectively
head and tail. The head points to a dummy node that is
not considered part of the queue, and is only there to allow
easy handling of the empty list. The list is initiated to a single
(dummy) node referenced by both the head and the tail.

To dequeue an element, the dequeuing thread tries to move
the head to point to head->next using an atomic CAS in-
struction. Upon success, it retrieves the value in the new node
pointed to by the head and upon failure it begins from scratch.

To enqueue an element, a new node is allocated and ini-
tialized with the required value and a null next pointer. If
tail->next is NULL, then the enqueue attempts to let
tail->next point to its node using an atomic CAS in-
struction. Upon success, it then moves tail to point to

31

A Persistent Lock-FreeQueue for Non-Volatile Memory PPoPP ’18, February 24–28, 2018, Vienna, Austria

tail->next. Upon failure to append the node, the operation
goes back to inspecting the tail and attempting to append at
the end. If tail->next is not NULL, this means that the pre-
vious operation has not completed and the tail must be fixed
to point to the last node. Thus, the current thread attempts to
fix the tail and then it starts from scratch.

The linearization point of a dequeue operation is at a suc-
cessful CAS executed on the head. Enqueuing an element is
linearized in a successful CAS appending a node at the end
of the queue. Note that the tail can later be fixed by the thread
performing the enqueue or by any other enqueue operation
that needs to append its node at the end. No appending is
attempted before the tail is fixed and pointing to the last node
in the queue. A full description of this queue appears in the
original paper [24].

3 An Alternative Definition for Durable
Linearizability

In this section we propose an alternative definition (Defini-
tion 3.5) of durable linearizability and show its equivalence
to the definition of Izraelevitz et al. [17]. We believe this
definition may be useful for proving that a data structure is
durable linearizable.

We assume a system with volatile cache and non-volatile
memory. Extensions to a system whose main memory is also
volatile is straightforward.

The first definition specifies operations whose effects per-
sists in the NVM after recovery from a crash.

Definition 3.1. Durability of operation. Given an execution
E, we say that an operation O is durable at step t of the
(extended) execution E if the following holds. For any legal
execution E ′ which equals E in the first t steps, if the exe-
cution of the recovery of O completes in E ′, then for any
linearization of E ′, O is linearized. We say that operation O
is not durable at step t if for any legal execution E ′ which
equals E in its first t steps, the operation O is not linearized
in any possible linearization of E ′.

In other words, an operation is durable at time t, if a re-
covery execution that follows a crash at time t must cause
this operation to be linearized. An operation is not durable
at time t if the recovery after a crash at time t or at any time
thereafter does not make O take effect.

Note that typical recovery procedures in this paper are de-
terministic and depend only on the content of the non-volatile
memory. Therefore, the durability of an operation at time t
can be derived from the NVM view at time t. Our definitions
do not cover data structures for which recoverability of an
operation depends on anything additional to the content of the
NVM. Namely, we assume from now on that each operation
is either durable or not durable at any step t of any execution.
Natural data structures (and all data structures presented in
this paper) do have this property.

Recall that a linearization point is a point at which a data
structure operation appears to occur instantly during operation
execution, behaving as specified by the sequential specifica-
tion. For arguing about durability, it is useful to define an
analogue durability point, which is a point in the (extended)
execution at which an operation becomes durable. Before this
point, the operation does not survive a crash, and after this
point it does (by the recovery procedure).

Definition 3.2. Durability point. Given an (extended) execu-
tion E, we say that the durability point of operation O is the
first point t in the execution when the operation O becomes
durable.

Note that after a durability point of an operation, if we
execute a recovery, then the operation is linearized, in any
possible legal extension of the execution so far, including
crashes. This implies that the NVM view has enough infor-
mation to complete the operation. Hence, the durability point
must happen at a point where data is written to the NVM, i.e.,
a flush step in the execution.

Definition 3.3. Durability order. Given an execution E, the
durability points of the operations in the execution E imply an
order on the operations, which we call durability order. For
typical data structures, including the ones presented in this
paper, a durability point is unique and can be simply deter-
mined by running the recovery processing on the NVM view
after each step of the execution (imitating a crash). However,
it is possible that a single flush to memory makes multiple op-
eration durable simultaneously. So any two operations either
become durable at the same time in the durability order, or
one is ordered before the other.

Definition 3.4. A linearizability order that fits a durability
order. Given an execution E, a linearizability order L of the
execution fits a durability order D of the execution E if ev-
ery two operations in ops(E) that are strictly ordered in the
durability order have the same order in the linearizability
order.

Definition 3.5. Durable linearizability: alternative definition.
A linearizable object is called durably linearizable if for all
executions E of the object:

1. The durability point of each operation is between its
invocation and response.

2. There exists a linearization of E whose order of op-
erations fits the durability order of the operations in
E.

The next theorem asserts the equivalence of Definition 3.5
to durable linearizability of Izraelevitz et al. [17].

Theorem 3.6. A linearizable object is durable linearizable
according to [17] iff it is durable linearizable by Definition 3.5.

Proof. → Assume by contradiction that one of the conditions
in Definition 3.5 does not hold. If the first condition does not

32

PPoPP ’18, February 24–28, 2018, Vienna, Austria Michal Friedman, Maurice Herlihy, Virendra Marathe, and Erez Petrank

hold, then there is an operation O whose durability point did
not occur between its invocation and its response. This implies
that its durability point of O occurred after its response or not
at all. (An operation cannot become durable before it starts
executing). Consider the prefix E ′ of the execution E that
completes after the operation’s response. As the durability
point has not yet occurred in E ′, then in any extension of
E ′, the operation O does not take effect. Let us choose an
extension E ′′ of E ′ in which a crash occurs after the response
of O and then the recovery is executed to completion. In E ′′

the operation O will not take effect, even though it completed
before the crash.

Now assume that the second condition of Definition 3.5
does not hold. This means that there exists an execution whose
durability order is different from any possible linearization or-
der. Consider the longest prefix of operations in the durability
order for which there exists a fitting linearization order. By the
assumption, there are additional operations in the execution.
Consider a crash that occurs after one additional operation.
The resulting sequence of durable operations does not fit any
prefix of any linearizable order, contradicting durable lin-
earization of [17].
← If a crash occurs during an execution, then all the oper-
ations that have completed are durable because their dura-
bility points occur before the operations’ responses. Opera-
tions whose response has not yet occurred at the time of the
crash will persist iff their durability point occurred before the
crash. Since there exists a linearization order that matches the
durability point order, there exist linearization orders where
the prefix will persist as required by durable linearizability
of [17]. □

4 An Overview of the Three Queue Designs
Our queue builds on Michael and Scott’s queue (denoted the
MS queue) and consists of a linked list of nodes that hold the
enqueued values, plus the head and the tail references. The
basic original queue is extended with FLUSH operations to
persist memory content required for recovery from crashes,
and also with additional information that facilitates recovery.

Our three designs offer varying levels of durable lineariza-
tion with guarantees provided to the caller. The durable ver-
sion provides durable linearizability, the log queue provides
both durable linearization and detectable execution, and the
relaxed version provides buffered durable linearizability.

4.1 The Durable Queue
The durable queue satisfies durable linearizability, implying
that any operation that completes before a crash must become
persistent after the recovery. The first guideline we use in
constructing this queue is the completion guideline, which
states that when an operation completes, its effect is durable.
This ensures that when a crash occurs, previously completed
operations are bound to persist. In addition, a dependence

order must be maintained in this construction between all
operations that occur concurrently to a crash. For example, if
two dequeues occur concurrently with a crash, linearizability
dictates that if the second dequeue completes (the one that
dequeued the later value in the queue), then the earlier de-
queue must complete as well. Ensuring this requires extra
care. Therefore, the second guideline we use is the depen-
dence guideline by which each operation must ensure that all
previous operations become durable before starting to execute.
Previous here refers to operations that the current operation
depends on and that must be linearized before the current
operation can be linearized. We recommend this guideline
be followed for all future constructions. Finally, we use a
third and generally recommended initialization guideline, by
which all fields of an object are flushed after the object is
initialized and before the object is added to (i.e., before it
becomes reachable from) the data structure. An overview on
how the above three guidelines are implemented for the queue
follows.

The enqueue operation of the durable queue starts by allo-
cating a node and initializing it with the enqueued value and
with a NULL next pointer. Next, it FLUSHes the node content
to memory. This ensures that, before this node is appended to
the queue, its durable content becomes updated. Next, recall
that the original MS enqueuer attempts to append the node
to the end of the queue and then fix the tail to point to the
appended node. Appending is only allowed if the tail points
to the last node, whose next pointer is NULL. If this is not the
case, the enqueuer first fixes the tail and only then tries again
to append its own node.

In the extended enqueue of the durable queue, we add a
FLUSH instruction after appending the new node and before
fixing the tail. This FLUSH persists the pointer from the previ-
ous last node to the newly appended node. This flush satisfies
the first guideline: at this point the operation is durable. If a
crash occurs, the new node is safely persistent in the list.

Next, we turn to satisfying the second guideline. We need
to make sure that a previous enqueue is made persistent before
a new enqueue operation starts. That should be done when
one thread adds a node at the end but pauses before flushing
the pointer to the added node (and also before fixing the tail).
In this case, extra care should be taken when helping to fix
the tail for another operation. If an enqueuer needs to fix the
tail following an incomplete previous enqueue operation, then
it also flushes this pointer (that links the added node to the
queue) before fixing the tail to point to this node.

The flush operations described above ensure that after en-
queuing a node, the node content is durable and the pointer
leading to it from the linked list is durable. Namely, all the
backbone pointers of the linked-list underlying the queue
are durable, except possibly the last updated pointer, whose
enqueuing operation has not yet completed. The tail, on
the other hand, need not be durable. During a recovery we

33

A Persistent Lock-FreeQueue for Non-Volatile Memory PPoPP ’18, February 24–28, 2018, Vienna, Austria

can find its value by chasing the linked-list from the current
location of the head until the last reachable node.

To make the dequeue operation durably linearizable, we
need to add more than just flushes. First, we add a node
field deqThreadID. This field in the queue node points
to the thread that dequeued (the value in) this node. The
deqThreadID field serves two purposes. First, it provides a
direction for the recovery procedure to place the dequeued
value at the disposal of the adequate dequeuer if a crash oc-
curs. To facilitate such a recovery, we keep a returnValue[]
array with an entry for each thread, in which a returned value
can be placed. Second, it allows one dequeue operation to
ensure that a previous dequeue operation completes and is
made persistent.

To dequeue a value of a node, a dequeuer attempts to write
its thread ID in the deqThreadID field of node head->next
using an atomic CAS instruction. Whether successful or
not, it then flushes the deqThreadID field to the memory
to make sure that the thread which succeeded in this dequeue
is recorded in the NVM. Next, it places the node’s value
in returnedValues[deqThreadID], flushes this field to the
memory to make sure the result is durably delivered to the
caller, and updates the head to point to the next node. If the
dequeuer did not manage to write its own thread ID into
deqThreadID, then (after helping) it starts again by trying
once more to place its thread ID in the deqThreadID field of
head->next.

These operations provide durability as required. When an
operation completes, its effects are persistent, and before an
operation starts, it makes the effects of the previous operation
persistent. However, this design has performance costs due to
the added FLUSHes. Measurements of this cost are given in
Section 6.

To recover from a crash, we fix the head, making sure that
all dequeued values are placed in their intended locations,
and place the head over the last node whose deqThreadID
is non-NULL. We then also fix the tail to point to the last
reachable node in durable memory.

The full algorithmic details appear in Section 5.

4.2 The Log Queue
The second implementation provides durable linearization
and also detectable execution. This means that following a re-
covery after a crash, each thread can tell whether its operation
has been executed, and it receives the results of completed
operations. The log queue implementation employs a log ar-
ray for the threads. An operation starts by being announced
on a thread log. An operation is assign an operation number
that is given by the user invoking thread such that the thread
ID and the operation number uniquely identify the operation.
The log contains the operation number, a flag that signifies if
the operation completed, and an additional field that holds the
operation result. If a crash occurs, then it is possible to sim-
ply inspect the log entry that contains the relevant operation

number after the recovery to determine whether an operation
of a crashed thread was executed or needs to be started again.
Thus, the program can execute each of its intended operations
exactly once.

Our general methodology for combining durability with
detectable execution is to start with the durable version of the
data structure and extend it with a mechanism to notify that
the operation has completed. We demonstrate this approach
on the queue. In the log array we maintain, for each thread, a
log object on which a thread announces its intent to execute an
operation, and on which the result and the operation numbers
are written. The algorithmic details appear in [11]. We provide
an overview next.

The enqueue operation of the log queue starts by allocat-
ing a log object and a new queue node. Both the log object
and the queue node are first initialized. The node’s value
is determined by the input, the node’s next field is set to
NULL, and the node logInsert field points to the log object.
The log object is initialized with a pointer to the new node,
with an indication that the operation is enqueued, and with an
operation number that is assigned by the invoking thread. The
contents of the node and the log object are then flushed to
memory. Next, a pointer to this log object is placed in the log
array (at the entry of the enqueuer thread) and this array entry
is also flushed. Next we try to append the new node at the
end of the queue and, if successful, we flush the appending
pointer, namely, from the previous last node to the current
last node, which has just been appended. Finally, we update
the tail. No flushing is required for tail updates.

If the tail is not pointing to the last node, we need to fix the
tail. Before fixing the tail, we flush the last pointer and fix the
tail. After fixing the tail it is possible to try again to append
our node at the end of the queue.

To dequeue a node we start by allocating a log object
and initialize it to indicate the dequeue operation and the
operation number. The log object is then flushed, a pointer
to it is placed in the log array, and this entry in the log array
is flushed as well. We then try to write a pointer to the log
object into the logRemove entry of node head->next. Upon
success, we flush the content of the logRemove field. We then
put a pointer in the log to this node (which indicates that
the operation has completed) and flush the log content as
well. Finally, we advance the head to head->next. (The head
need not be flushed.) A thread that fails to write its log entry
into node head->next helps complete the dequeue operation
(including flushing, linking to the log, flushing, and updating
the head) and then tries its operation again.

During recovery, we start from the head and walk the linked
list. Whenever we see a pointer to a log, we check whether
the operation is completed, and if not, we complete the op-
eration. The head is set to the last node that has a non-NULL
logRemove field. We then proceed to update the tail to the
last element in the list. We also make sure the last enqueue
is completed by following the above procedure for marking

34

PPoPP ’18, February 24–28, 2018, Vienna, Austria Michal Friedman, Maurice Herlihy, Virendra Marathe, and Erez Petrank

the completion of the enqueue operation in the relevant log
before fixing the tail for the last time. Finally, we go over all
log entries and complete all the unfinished operations.

The proposed algorithm inherits from the durable queue
the completion, dependence, and initialization guidelines for
all of the operations included there. We use the initialization
guideline for initializing the log object, while the dependence
guideline ensures that previous operations become durable
before we execute our own. In addition, we use a logging
guideline, which ensures that the log with the description of
the intended operation and the operation number is flushed
before the operation is executed. This in turn ensures that,
upon recovery, the operation will be completed.

4.3 The Relaxed Queue
The relaxed queue implementation provides buffered durable
linearization, which is a weaker requirement. Buffered
durable linearization only mandates that, upon failure, a
proper prefix of the linearized operations take effect after
recovery, while the rest of the operations are lost. There is
no need to recover all operations that completed before the
crash and thus no need to make an operation durable before
returning. Hence, we adopt different guidelines, to maximize
performance. The implementation needs to provide a sync()
method that forces previous operations to become durable
before later operations become durable. Typically, a caller
invokes the sync() method to ensure proper compositionality
between different data structures; occasionally, it does so to
make sure not too many operations are lost when a crash
occurs.

We use a design pattern that can be used for other data
structures as well. During the execution of a sync() opera-
tion, we obviously make all previously executed operations
durable, but we also save the state of the queue. In case of a
crash, we (boldly) discard all operations that followed the last
sync(), by returning to the saved state from the latest sync().
This may seem a painful loss of operations during a crash,
but it efficiently satisfies the (weak) requirement of buffer
durability and it allows the queue to be saved at different fre-
quencies. The algorithm can completely avoid executing any
FLUSH instructions inside the enqueue and dequeue operations.
We only execute FLUSHes in the sync() method. This implies
low overhead if crashes and sync() invocations are infrequent.
Buffered durable linearizability is guaranteed because a con-
sistent cut (a proper prefix) of the executed operations is
always recovered after a failure. We call this design pattern
return-to-sync.

To apply this idea to saving a state of the queue, we first
note that nodes in the queue are essentially immutable from
the moment they are appended to it. So if we look at a current
queue state and would like to elide several recent operations
and return in time to an earlier state, it suffices to simply
restore head and tail to their previous values at that earlier
time (and set tail->next to NULL). Keeping this in mind,

we add to the queue state two variables, saved_head and
saved_tail, which hold the values of head and tail the last
time sync() was called. Whenever a crash occurs, we can set
head and tail back to their saved values. For this to work
properly, we need to make all the nodes between saved_head
and saved_tail persistent. The sync() method ensures this
by performing the required flushes.

The above motivating discussion implies what the sync()
method should do. This method starts by reading the current
head and tail values. It then flushes the content of all nodes
in between these two pointers to the durable memory, and
finally, it attempts to replace the previously saved head and
tail with the current ones. The first challenge is to obtain
an atomic view of head and tail, in order to make sure that
a consistent cut (i.e., a proper prefix) of the operations is
made persistent. A second challenge is to replace the values
of saved_head and saved_tail simultaneously. The third
challenge is to coordinate multiple sync() operations and make
sure that the most updated consistent cut is saved to NVM.

We solve the first challenge by marking the tail pointer,
after which it does not change until the head and tail are
saved. It is important that we not mark the tail in the middle
of an enqueue operation. This can be enforced by helping
to complete previous operations. The simultaneity challenge
is simply solved by holding saved_head and saved_tail
inside an object that is replaced by a single CAS instruction.
The third challenge is solved by obtaining a global number
that indicates the order of the sync() operations and dealing
with races that come up. The full algorithmic details appear
in [11]. For the relaxed queue, the completion guideline is
irrelevant. The return-to-sync design pattern makes the depen-
dence and the initialization guidelines irrelevant as well.

5 Algorithm Details of the Durable Queue
As mentioned above, our queue extends the MS queue. Its
underlying data structure includes a linked-list of queue nodes
and the head and tail pointers. The first node in the linked-
list is a sentinel node that allows simple treatment of an empty
list. The implementations use FLUSH in order to maintain
different levels of guarantees. The FLUSH operation consists
of two hardware instructions, as discussed in Section 2.4. In
this section, we provide the details of the durable queue. Due
to space limitations, the log queue and the relaxed queue
are described in [11]. Our queue’s underlying representation
is a singly-linked list with a sentinel node. It builds on the
inner Node class, which holds elements of the queue’s linked-
list. In addition to the standard node fields, i.e., the value and
the pointer to the next element, the node class also contains
an additional field (line 4): deqThreadID. This field holds the
ID of the thread that removes the node from the queue.

The durable queue class contains two pointers and an array.
The pointers head and tail point to the first and last nodes of
the linked list that implements the queue. The returnedValues

35

A Persistent Lock-FreeQueue for Non-Volatile Memory PPoPP ’18, February 24–28, 2018, Vienna, Austria

1 class Node {
2 T value;
3 Node∗ next;
4 int deqThreadID;
5 Node(T val) : value(val),next(NULL), deqThreadID(−1) {} };
6 class DurableQueue{
7 Node∗ head;
8 Node∗ tail;
9 T∗ returnedValues[MAX_THREADS];

10 DurableQueue() {
11 T∗ node = new Node(T()); FLUSH(node);
12 head = node; FLUSH(&head);
13 tail = node; FLUSH(&tail);
14 returnedValues[i] = NULL; // for every thread
15 FLUSH(&returnedValues[i]); } };

Figure 1. Internal Durable Queue classes

array is an array of pointers to objects that hold dequeued
values (line 9). This array contains an entry for each thread
and its size is MAX-THREADS, which is the number of threads
that might perform operations on the queue.

The returnedValues array entries point to an object that
contains a single value field. This field either contains a
value that has been dequeued from the queue, or one of three
special values that are not valid queue values:

1. The special NULL value signifies that the thread is
currently idle (this is the initial value).

2. The special pending value indicates the intention of the
thread to remove a node.

3. The special empty value is returned when the queue is
empty.

The queue constructor initializes the underlying linked list
with one sentinel node. It lets the head and the tail point to this
sentinel node, and it also initializes the returned values array
with the special NULL value. In order to persist these values,
we flush the sentinel node, the head and the tail pointers, and
the returnedValues array.

Theorem 5.1. The durable queue is durably linearizable.

Correctness arguments for the queue, its progress guarantee
and durability (proof of theorem 5.1) appear in [11].

5.1 The Enqueue() Operation
The pseudo-code for the enqueue operation is provided in
Figure 2. The enqueue method receives the value to be en-
queued and it starts by creating a new node with the received
value (line 2). It then flushes the node content (line 3). Next,
the thread checks whether the tail refers to the last node in
the linked list (lines 7-8). If so, it tries to append the new
node after the last node of the list (line 9). Insertion consists
of two actions: adding the new node after the last node and
updating the tail to reference the newly added node. To ensure
proper durability, we add a flush between the two actions. If

1 void enq(T value) {
2 Node∗ node = new Node(value);
3 FLUSH(node);
4 while (true) {
5 Node∗ last = tail;
6 Node∗ next = last−>next;
7 if (last == tail) {
8 if (next == NULL) {
9 if (CAS(&last−>next, next, node)){

10 FLUSH(&last−>next);
11 CAS(&tail, last, node); return; }
12 } else {
13 FLUSH(&last−>next);
14 CAS(&tail, last, next); } } } }

Figure 2. Enqueue operation of Durable Queue

insertion at the end is successful, we flush the next pointer
of the previous node (line 10), and only then update the tail
(line 11). Failure in updating the tail means that another thread
has helped update it already completed the insertion of the
current thread. Failure in the first CAS instruction (line 9)
means that another thread has appended a different node and
the operation starts from scratch (line 5). In case the next
pointer of the last node does not point to NULL (line 12), we
help complete the previous enqueue operation by flushing the
previous next pointer (line 13) and fixing the tail (line 14).

The consistent flushing of the next pointer before updating
the tail and the flushing of the node content after its initial-
ization yield an important invariant: the entire linked list, up
until the current tail, is guaranteed to reside in the volatile
memory. This enables the correct execution of the recovery
procedure.

5.2 The Dequeue() Operation
The dequeue operation receives a thread ID of the dequeuer.
It starts by creating and initializing to NULL a new T object,
whose purpose is to hold the dequeued value (line 2). Next,
it flushes T’s content (line 3). Then, it puts a reference to
T in the returnedValues array and flushes the array entry
(lines 4-5). Next, the thread checks that the queue is not empty
and that the tail points to the last node (lines 7-17).

If the queue is empty, the method updates the correspond-
ing entry in the returnedValues array with the empty value,
flushes it and returns (lines 13-15). If the head and tail re-
fer to the same node and the tail must be fixed, i.e., there is
some enqueue operation in progress (line 11-12), then the
dequeuer helps complete this enqueuing operation. It flushes
the next pointer of the previous node (in our case the sentinel),
fixes the tail and returns to the beginning of the while loop
(lines 16-17). Dequeuing a node consists of following actions:
marking the deqThreadID field of the node head->next with
the dequeuer thread ID, writing the dequeued value in the
returnedValue array, and promoting the head. If the thread

36

PPoPP ’18, February 24–28, 2018, Vienna, Austria Michal Friedman, Maurice Herlihy, Virendra Marathe, and Erez Petrank

1 void deq(int threadID){
2 T∗ newReturnedValue = new T();
3 FLUSH(newReturnedValue);
4 returnedValues[threadID] = newReturnedValue;
5 FLUSH(&returnedValues[threadID]);
6 while (true) {
7 Node∗ first = head;
8 Node∗ last = tail;
9 Node∗ next = first−>next;

10 if (first == head) {
11 if (first == last) {
12 if (next == NULL) {
13 ∗returnedValues[threadID] = EMPTY;
14 FLUSH(returnedValues[threadID]);
15 return; }
16 FLUSH(&last−>next);
17 CAS(&tail, last, next);
18 } else {
19 T value = next−>value;
20 if (CAS(&next−>deqThreadID, −1, threadID)) {
21 FLUSH(&first−>next−>deqThreadID);
22 ∗returnedValues[threadID] = value;
23 FLUSH(returnedValues[threadID]);
24 CAS(&head, first, next);
25 return;
26 } else {
27 T∗ address =
28 returnedValues[next−>deqThreadID];
29 if(head == first){ //same context
30 FLUSH(&first−>next−>deqThreadID);
31 ∗address = value;
32 FLUSH(address);
33 CAS(&head, first, next); } } } } } }

Figure 3. Dequeue operation of Durable Queue

succeeds in changing the deqThreadID field from NULL to
his thread ID (line 20), then it flushes deqThreadID (line 21).

Next, it updates its entry in the array with the new value and
flushes this result. Finally, it updates the head (line 24). Fail-
ure to update the head means that another thread has helped
and completed the removal of the current thread. Failure
to update the deqThreadID field means that another thread
has already marked the node with its own threadID, so the
dequeuer helps complete this other dequeue before starting
again (lines 26-33). An important invariant here is that before
the head is moved, the deqThreadID field content (which de-
termines which thread receives the dequeued value) is made
durable so that recovery can identify the winning dequeue
operation. Also, before the head is advanced, the dequeued
value is written to the returnedValue array and the returned
value is flushed. Therefore, once the head advances in main
memory, we know that the dequeuing of all previous nodes
can be recovered.

5.3 The Recovery() Operation
The recovery procedure executes as follows. It traverses the
nodes starting from the head pointer. If the deqThreadID
field of a traversed node is not NULL, then it completes the
relevant dequeue operation by updating the dequeued value
in the corresponding entry in the returnedValues array. The
head is then set to point to the last node that has a non-
NULL deqThreadID field. Traversal then continues through
all reachable nodes until the last reachable one, whose next
pointer is NULL. The tail is then set to reference this node.
We consider a dequeue operation that has a valid result in the
associated returnedValues array entry as complete.

6 Measurements
We evaluated the performance of the proposed three queue
implementations by comparing them one against the other
and also against the original MS queue. We ran measurements
on a 64-core machine, featuring 4 AMD Opteron(TM) 6376
2.3GHz processors, each with 16 cores. The machine has
128GB RAM, an L1 cache of 16KB per core, an L2 cache
of 2MB for every two cores, and an L3 cache of 6MB per
half a processor (8 cores). The operating system is Ubuntu
14.04 (kernel version 3.16.0). We also measured performance
on an Intel platform. See [11] for additional performance
measurements on an Intel platform.

As in previous work [3, 4, 27], we measured the perfor-
mance of the execution with flushes on a real system because
we assume that an NVM will use a controller that will write
data quickly into a local fast VM. We also assume that upon
a crash, local batteries will allow saving the remaining lo-
cal volatile data to the NVM. Thus, the actual flush cost is
expected to be similar to the one we see on current platforms.

Since the queue is not a scalable data structure, executions
with many threads are not relevant and we only measured 1-8
threads. Each execution lasted 5 seconds. All functions were
implemented in C++ and compiled using the g++ compiler
version 6.2 with the -O3 optimization flag. Memory manage-
ment was handled with hazard pointers, and is described in
the full version of this paper [11]. In our implementation, we
followed the hazard pointer scheme provided in [22] and used
the implementation of [23]. Following [19, 24], we evaluated
the performance of the queue algorithms with a workload
that lets several threads run enqueue-dequeue pairs concur-
rently. The queue is either initiated with 5 enqueued elements
(for a small queue), or 1,000,000 enqueued elements (for a
large queue). We depict the difference in the throughput of
the MS queue and our three new algorithms across different
numbers of threads. Each test was repeated 10 times and the
average throughput is reported. The x-axis denotes the num-
ber of threads, and the y-axis stands for millions of operations
per second. A high number is better, meaning that the mea-
sured scheme has higher throughput. With hazard pointers

37

A Persistent Lock-FreeQueue for Non-Volatile Memory PPoPP ’18, February 24–28, 2018, Vienna, Austria

Figure 4. Throughput of the various queue imple-
mentations with no object reuse.

Figure 5. Throughput of the various queue imple-
mentations with memory management. Initial size
of the queue is 5.

Figure 6. Throughput of the various queue imple-
mentations with memory management. Initial size
of the queue is 1,000,000.

(designed in [22], and implemented in [23]) the memory man-
agement overhead is large and the results of Figure 5 and
Figure 6 are less indicative of the bare queue actual perfor-
mance. This is why we also provide the measurements without
memory management in Figure 4. As expected, queues that
provide weaker durability guarantees perform better in most
cases, with the exception being when the queue is very large
and the garbage collection costs dominate performance. We
believe that the reason for this is that large queues employ
many hazard pointers and this cost is similar to all queue vari-
ants. In contrast, small queues can avoid some flushes. When
the sync() function is infrequently called, the new head may
pass the old tail between snapshots, reducing the required
number of flushes, and eliminating most of the hazard pointer
uses. Surprisingly, the relaxed queue performs better than the
MS queue without garbage collection. We believe this is due
to an implicit back-off effect that the slower queue creates.

We ran the relaxed queue and let each thread execute the
sync() function every K*N operations, where K varies be-
tween, 10, 100, 1000 and 10000 and N is the number of the
threads. We omitted the K = 10000 results because they are
similar to the K = 1000 results. As each of the N threads
executes a sync every K*N operations, we get that on average
a sync is executed in the system after each thread executes K
operations.

7 Related Work
To the best of our knowledge, the presented queues are the
first lock-free data structure designed for adapted execution
with NVM. Several papers propose definitions for durability.
In this paper we work with the definition of [17] but our algo-
rithms and guidelines suit other definitions as well. In [27] the
authors propose alternative definitions, some of which require
hardware modifications. They also design a queue, but it is
not lock-free. They use a lock (with additional flushes) to
synchronize queue access.

Several prior works proposed transactional updates to per-
sistent memory that guarantee failure atomicity – a collection
of persistent data updates all occur or none do across failure
boundaries [4, 7, 12, 18, 20, 33]. While these approaches
work, they trade off performance for consistency in the face
of failures – transaction runtimes incur significant bookkeep-
ing overheads to consistently manage transaction metadata.
An interesting alternative strategy to transactional updates is
to build libraries of high performance persistent data struc-
tures [21] that are heavily optimized using ad hoc techniques
informed by the data structure architecture and semantics.
This is the focus of the current work.

Several other papers proposed using stable storage to main-
tain the state of the object. In [1] the authors propose solving
consensus using stable storage by recording the state of the
processes every round. Another paper [13] optimizes the log-
ging procedure and provides a logarithmic lower bound for
robust shared memory emulations.

Recently, [8] studied the construction of an efficient log
adequate for non-volatile memory in the same settings as
this work. This protocol can be extended to build an effi-
cient single-threaded hash map. Additional related work was
mentioned throughout the paper.

8 Conclusion
In this paper we presented three designs for lock-free con-
current queues that can be used with non-volatile memory.
These designs demonstrate avenues to deal with durable lin-
earizability, buffered durable linearizability (with a sync op-
eration), and detectable execution. As expected, full durable
linearizability has a substantial performance cost. In contrast,
buffered durable linearizability incurs a lower overhead as
long as the sync operations are infrequently called.

38

PPoPP ’18, February 24–28, 2018, Vienna, Austria Michal Friedman, Maurice Herlihy, Virendra Marathe, and Erez Petrank

References
[1] Marcos Kawazoe Aguilera, Wei Chen, and Sam Toueg. 2000. Failure

Detection and Consensus in the Crash-recovery Model. Distrib. Comput.
13, 2 (April 2000), 99–125. https://doi.org/10.1007/s004460050070

[2] Marcos K Aguilera and Svend Frølund. 2003. Strict linearizability and
the power of aborting. Technical Report HPL-2003-241 (2003), 25.
http://www.hpl.hp.com/techreports/2003/HPL-2003-241.pdf

[3] Kumud Bhandari, Dhruva R. Chakrabarti, and Hans-J. Boehm. 2016.
Makalu: Fast Recoverable Allocation of Non-volatile Memory. In
Proceedings of the 2016 ACM SIGPLAN International Conference
on Object-Oriented Programming, Systems, Languages, and Appli-
cations (OOPSLA 2016). ACM, New York, NY, USA, 677–694.
https://doi.org/10.1145/2983990.2984019

[4] Dhruva R. Chakrabarti, Hans-J. Boehm, and Kumud Bhandari. 2014.
Atlas: Leveraging Locks for Non-volatile Memory Consistency. In
Proceedings of the 2014 ACM International Conference on Object
Oriented Programming Systems Languages & Applications (OOPSLA
’14). ACM, New York, NY, USA, 433–452. https://doi.org/10.1145/
2660193.2660224

[5] Andreas Chatzistergiou, Marcelo Cintra, and Stratis D. Viglas. 2015.
REWIND: Recovery Write-Ahead System for In-Memory Non-Volatile
Data-Structures. PVLDB 8, 5 (2015), 497–508. http://www.vldb.org/
pvldb/vol8/p497-chatzistergiou.pdf

[6] Ping Chi, Wang-Chien Lee, and Yuan Xie. 2014. Making B+-tree
Efficient in PCM-based Main Memory. In Proceedings of the 2014 In-
ternational Symposium on Low Power Electronics and Design (ISLPED

’14). ACM, New York, NY, USA, 69–74. https://doi.org/10.1145/
2627369.2627630

[7] Joel Coburn, Adrian M. Caulfield, Ameen Akel, Laura M. Grupp, Ra-
jesh K. Gupta, Ranjit Jhala, and Steven Swanson. 2011. NV-Heaps:
Making Persistent Objects Fast and Safe with Next-generation, Non-
volatile Memories. In Proceedings of the Sixteenth International Con-
ference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS XVI). ACM, New York, NY, USA, 105–
118. https://doi.org/10.1145/1950365.1950380

[8] Nachshon Cohen, Michal Friedman, and James R. Larus. 2017. Effi-
cient Logging in Non-volatile Memory by Exploiting Coherency Proto-
cols. Proc. ACM Program. Lang. 1, OOPSLA, Article 67 (Oct. 2017),
24 pages. https://doi.org/10.1145/3133891

[9] Jeremy Condit, Edmund B. Nightingale, Christopher Frost, Engin
Ipek, Benjamin Lee, Doug Burger, and Derrick Coetzee. 2009. Bet-
ter I/O Through Byte-addressable, Persistent Memory. In Proceedings
of the ACM SIGOPS 22Nd Symposium on Operating Systems Prin-
ciples (SOSP ’09). ACM, New York, NY, USA, 133–146. https:
//doi.org/10.1145/1629575.1629589

[10] Fatcache 2013. twitter/fatcache: Memcache on SSD.
https://github.com/twitter/fatcache. (2013).

[11] Michal Friedman, Maurice Herlihy, Virendra Marathe, and Erez Petrank.
2018. A Persistent Lock-Free Queue for Non-Volatile Memory. (2018).
http://www.cs.technion.ac.il/~erez/Papers/nvm-queue-full.pdf

[12] Ellis Giles, Kshitij Doshi, and Peter J. Varman. 2015. SoftWrAP:
A lightweight framework for transactional support of storage class
memory. In 2015 31st Symposium on Mass Storage Systems and Tech-
nologies (MSST), Vol. 00. 1–14. https://doi.org/10.1109/MSST.2015.
7208276

[13] Rachid Guerraoui and Ron R. Levy. 2004. Robust Emulations of Shared
Memory in a Crash-Recovery Model. In in: Proceedings of the 24th
IEEE International Conference on Distributed Computing Systems,
ICDCS. 400–407.

[14] Maurice Herlihy. 1990. A Methodology for Implementing Highly
Concurrent Data Structures. In Proceedings of the Second ACM SIG-
PLAN Symposium on Principles &Amp; Practice of Parallel Program-
ming (PPOPP ’90). ACM, New York, NY, USA, 197–206. https:
//doi.org/10.1145/99163.99185

[15] Maurice P. Herlihy and Jeannette M. Wing. 1990. Linearizability: A
Correctness Condition for Concurrent Objects. ACM Trans. Program.
Lang. Syst. 12, 3 (July 1990), 463–492. https://doi.org/10.1145/78969.
78972

[16] Intel-Architecture-Manual 2017. Intel Ar-
chitectures Software Developer Manual.
https://software.intel.com/sites/default/files/managed/39/c5/325462-
sdm-vol-1-2abcd-3abcd.pdf. (2017).

[17] Joseph Izraelevitz, Hammurabi Mendes, and Michael L. Scott. 2016.
Linearizability of Persistent Memory Objects under a Full-System-
Crash Failure Model. In DISC 2016, Paris, France, 2016.

[18] Aasheesh Kolli, Steven Pelley, Ali Saidi, Peter M. Chen, and Thomas F.
Wenisch. 2016. High-Performance Transactions for Persistent Mem-
ories. In Proceedings of the Twenty-First International Conference
on Architectural Support for Programming Languages and Operat-
ing Systems (ASPLOS ’16). ACM, New York, NY, USA, 399–411.
https://doi.org/10.1145/2872362.2872381

[19] Edya Ladan-Mozes and Nir Shavit. 2008. An optimistic approach to
lock-free FIFO queues. Distributed Computing 20, 5 (01 Feb 2008),
323–341. https://doi.org/10.1007/s00446-007-0050-0

[20] Youyou Lu, Jiwu Shu, and Long Sun. 2016. Blurred Persistence:
Efficient Transactions in Persistent Memory. Trans. Storage 12, 1,
Article 3 (Jan. 2016), 29 pages. https://doi.org/10.1145/2851504

[21] Managed-Data-Structures 2016. Hewlett Packard Labs:
Data structures managed like never before on The Machine.
https://www.youtube.com/watch?v=3fN5_Qt9OCs. (2016).

[22] Maged M. Michael. 2004. Hazard Pointers: Safe Memory Reclamation
for Lock-Free Objects. IEEE Trans. Parallel Distrib. Syst. 15, 6 (June
2004), 491–504. https://doi.org/10.1109/TPDS.2004.8

[23] Maged M. Michael. 2017. Hazard Pointers.
https://github.com/facebook/folly/tree/master/folly/experimental/hazptr.
(2017).

[24] Maged M. Michael and Michael L. Scott. 1996. Simple, Fast, and
Practical Non-Blocking and Blocking Concurrent Queue Algorithms.
In Proc. ACM Symposium on Principles of Distributed Computing
(PODC). 267–275.

[25] Iulian Moraru, David G. Andersen, Michael Kaminsky, Nathan Binkert,
Niraj Tolia, Reinhard Munz, and Parthasarathy Ranganathan. 2011.
Persistent, Protected and Cached: Building Blocks for Main Memory
Data Stores. Technical Report CMU-PDL-11-114. Carnegie Mellon
University.

[26] Adam Morrison and Yehuda Afek. 2013. Fast Concurrent Queues for
x86 Processors. In Proceedings of the 18th ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming (PPoPP ’13).
ACM, New York, NY, USA, 103–112. https://doi.org/10.1145/2442516.
2442527

[27] Steven Pelley, Peter M. Chen, and Thomas F. Wenisch. 2015. Mem-
ory Persistency: Semantics for Byte-Addressable Nonvolatile Mem-
ory Technologies. IEEE Micro 35, 3 (2015), 125–131. https:
//doi.org/10.1109/MM.2015.46

[28] RabbitMQ [n. d.]. RabbitMQ – Messaging that works
https://www.rabbitmq.com/. ([n. d.]).

[29] Redis [n. d.]. Redis – in-memory data structure store, http://redis.io/.
([n. d.]).

[30] Swift [n. d.]. Swift Object Store. https://swift.openstack.org/. ([n. d.]).
[31] TuxedoMQ [n. d.]. Oracle Tuxedo Message Queue

http://www.oracle.com/us/products/middleware/cloud-app-
foundation/tuxedo/message-queue/overview/index.html. ([n. d.]).

[32] Shivaram Venkataraman, Niraj Tolia, Parthasarathy Ranganathan, and
Roy H. Campbell. 2011. Consistent and Durable Data Structures
for Non-volatile Byte-addressable Memory. In Proceedings of the 9th
USENIX Conference on File and Stroage Technologies. 5–5.

39

https://doi.org/10.1007/s004460050070
http://www.hpl.hp.com/techreports/2003/HPL-2003-241.pdf
https://doi.org/10.1145/2983990.2984019
https://doi.org/10.1145/2660193.2660224
https://doi.org/10.1145/2660193.2660224
http://www.vldb.org/pvldb/vol8/p497-chatzistergiou.pdf
http://www.vldb.org/pvldb/vol8/p497-chatzistergiou.pdf
https://doi.org/10.1145/2627369.2627630
https://doi.org/10.1145/2627369.2627630
https://doi.org/10.1145/1950365.1950380
https://doi.org/10.1145/3133891
https://doi.org/10.1145/1629575.1629589
https://doi.org/10.1145/1629575.1629589
http://www.cs.technion.ac.il/~erez/Papers/nvm-queue-full.pdf
https://doi.org/10.1109/MSST.2015.7208276
https://doi.org/10.1109/MSST.2015.7208276
https://doi.org/10.1145/99163.99185
https://doi.org/10.1145/99163.99185
https://doi.org/10.1145/78969.78972
https://doi.org/10.1145/78969.78972
https://doi.org/10.1145/2872362.2872381
https://doi.org/10.1007/s00446-007-0050-0
https://doi.org/10.1145/2851504
https://doi.org/10.1109/TPDS.2004.8
https://doi.org/10.1145/2442516.2442527
https://doi.org/10.1145/2442516.2442527
https://doi.org/10.1109/MM.2015.46
https://doi.org/10.1109/MM.2015.46

A Persistent Lock-FreeQueue for Non-Volatile Memory PPoPP ’18, February 24–28, 2018, Vienna, Austria

[33] Haris Volos, Andres Jaan Tack, and Michael M. Swift. 2011.
Mnemosyne: Lightweight Persistent Memory. In Proceedings of the Six-
teenth International Conference on Architectural Support for Program-
ming Languages and Operating Systems (ASPLOS XVI). ACM, New
York, NY, USA, 91–104. https://doi.org/10.1145/1950365.1950379

[34] WebSphereMQ [n. d.]. WebSphere MQ – IBM MQ.
www.ibm.com/software/products/en/ibm-mq. ([n. d.]).

[35] Chaoran Yang and John Mellor-Crummey. 2016. A Wait-free Queue
As Fast As Fetch-and-add. In Proceedings of the 21st ACM SIG-
PLAN Symposium on Principles and Practice of Parallel Program-
ming (PPoPP ’16). ACM, New York, NY, USA, Article 16, 13 pages.
https://doi.org/10.1145/2851141.2851168

40

https://doi.org/10.1145/1950365.1950379
https://doi.org/10.1145/2851141.2851168

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Execution and Durability
	2.2 Durable Linearizability
	2.3 Detectable Execution
	2.4 Hardware Instructions for Persistence
	2.5 The MS Queue

	3 An Alternative Definition for Durable Linearizability
	4 An Overview of the Three Queue Designs
	4.1 The Durable Queue
	4.2 The Log Queue
	4.3 The Relaxed Queue

	5 Algorithm Details of the Durable Queue
	5.1 The Enqueue() Operation
	5.2 The Dequeue() Operation
	5.3 The Recovery() Operation

	6 Measurements
	7 Related Work
	8 Conclusion
	References

