PLayer: Expanding Coherence Protocol Stack with a
Persistence Layer

Richard Braun
ETH Zurich, Switzerland
braunr@student.ethz.ch

Michal Friedman
ETH Zurich, Switzerland
michal.friedman@inf.ethz.ch

Abstract

Mechanisms to explicitly manage data persistence for non-
volatile main memories are fundamental for the correctness
and performance of modern systems. So far, however, most
solutions are primarily based on software techniques. In this
paper, we design a persistence layer on hardware, to support
correct handling of persistent lock-free data structures. By
exploiting cache-coherence messages, persistence can be
transparently managed by the hardware, with minimal user
intervention. We have experimented with a partial design on
a Soft-CPU running on an FPGA to explore the idea, and plan
to further extend it into a real hardware implementation.

ACM Reference Format:

Richard Braun, Abishek Ramdas, Michal Friedman, and Gustavo
Alonso. 2023. PLayer: Expanding Coherence Protocol Stack with a
Persistence Layer. In 1st Workshop on Disruptive Memory Systems
(DIMES °23), October 23, 2023, Koblenz, Germany. ACM, New York,
NY, USA, 8 pages. https://doi.org/10.1145/3609308.3625270

1 Introduction

With the commercial availability of Non-Volatile Main Mem-
ory (NVMM), high-performance, persistent byte-addressable
memory became a reality [3, 4, 36]. Upon a crash, NVMM
data will remain but CPU registers and caches are still volatile
and lose their contents when a crash occurs. Therefore, writ-
ing applications that provide recoverability following a crash
is still an involved and time-consuming process. As a result,
many paradigms for managing persistence in software have
emerged [7-10, 13, 15-19, 21-30, 33-35, 37-39, 42-45].

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
DIMES °23, October 23, 2023, Koblenz, Germany

© 2023 Copyright held by the owner/author(s). Publication rights licensed
to ACM.

ACM ISBN 979-8-4007-0300-3/23/10...$15.00
https://doi.org/10.1145/3609308.3625270

Abishek Ramdas
ETH Zurich, Switzerland
abishek.ramdas@inf.ethz.ch

Gustavo Alonso
ETH Zurich, Switzerland
alonso@inf.ethz.ch

One of these paradigms relies on persistent snapshots and
transactions. These are common approaches for providing
persistence [9, 13, 15, 23, 24, 27, 29, 33, 34, 44], and are widely
applicable. These approaches usually allow the programmer
to augment their code with instructions on where to take a
persistent snapshot, or which sections need to execute with
all-or-nothing semantics. Then, they guarantee a consistent
state from which the application can recover after a crash. A
significant downside of these very general paradigms is that
they usually come with high-performance degradation.

While the proposed paradigms for managing persistence
in software already make the development of persistent appli-
cations easier, they often require modifications to the applica-
tion code. To mitigate the overhead and code modifications,
research on implementing persistence management at the
hardware level has emerged [6]. The authors propose using
cache-coherent accelerators to implement write-ahead log-
ging in hardware on a single thread. This follows the trend of
computer systems becoming more heterogeneous, to better
adapt to today’s data-heavy workloads. These systems use
different purpose-built ASICs or FPGAs for offloading and
accelerating specific tasks. This trend is reflected in recent
standardization efforts, such as CXL, to provide standardized
hardware interfaces and protocols for accelerator devices [2].

Nonetheless, different applications have different require-
ments when it comes to what data needs to be saved to allow
recovery after a crash. For many applications, it is enough to
persist certain critical data structures. In this context, lock-
free data structures are a natural fit for persistence. That is
because every operation on the data structure is guaranteed
to leave it in a consistent state. Hence, as long as operations
are persisted in the correct order, every state of the data
structure is easily recoverable from [16, 18, 23, 31].

Lock-freedom guarantees are usually achieved through
atomic Read-Modify-Write instructions. In this paper, we pro-
pose using the specific cache-coherence messages occurring
during these atomic instructions, for implementing a persis-
tence layer (PLayer) applicable to lock-free data structures,
on hardware. This layer makes it easy for programmers to
make their data structures persistent with minimal changes.

https://doi.org/10.1145/3609308.3625270
https://doi.org/10.1145/3609308.3625270

DIMES ’°23, October 23, 2023, Koblenz, Germany

The Read-Modify-Write (RMW) cache-coherence messages
allow the cache-coherent accelerator device to track memory
operations on the host, and guarantee their persistence while
maintaining a consistent state. Moreover, it can distinguish
between writes that occur due to thread-local data manipu-
lations, and updates to the shared data-structure state. Since
thread-local data manipulations are not part of the data struc-
ture state, they do not require immediate persistence, which
reduces the overhead caused by persisting data. Only when
data becomes shared, we need to guarantee its persistence
before any other thread relies on this data.

Our proposed construction is intended to work with up-

coming standardized and commercially available cache-coherent

accelerator platforms, such as those implementing CXL [2].
As these platforms are not yet available, we used Enzian [11],
which provides a cache-coherent interconnect that allows
tracking and manipulating coherence messages. This way,
we evaluated most of our construction requirements against
what current, real-world cache-coherence protocols offer. We
experimented with a very early partial design on a Soft-CPU
running on an FPGA to explore the idea and plan to further
extend it into a real hardware implementation.

2 Background
2.1 Non-Volatile memory and persistent programs

Running an arbitrary piece of software on persistent memory
alone is, unfortunately, not enough to guarantee recoverabil-
ity after a crash since caches are still volatile. Since their
contents are lost upon a crash, programs can remain in an
inconsistent state. To overcome their volatility, one needs
to write back every memory access to the NVMM, before
the next operation is executed [23]. Other solutions try to
reduce the expensive writeback overhead, but their perfor-
mance is still degraded [7, 15-17, 33, 38]. To reduce their
performance penalty, specialized hand-tuned data structures
are used [8, 16, 18, 28, 31, 45]. These offer superior perfor-
mance as many instructions can be postponed to recovery
time if one can guarantee that the state after the crash re-
mains consistent. Writing optimized software solutions for
persistent memory, however, is not an easy task. The design
of such optimized data structures is considered hard and
error-prone [25], which is why automated transformations
are valuable [23, 25, 30, 40]. Some general transformations
also restrict their applicability to lock-free data structures
as in lock-freedom, every operation leaves the data struc-
ture in a consistent state, which makes it an excellent fit for
persistence transformations [17, 19].

2.2 Lock-Freedom and Read-Modify-Write
instructions

In lock-free programs, system-wide progress is guaranteed at

all times. Therefore, any thread can crash at any time, with-

out creating a deadlock [20]. If a thread crashes unexpectedly,

Richard Braun, Abishek Ramdas, Michal Friedman, and Gustavo Alonso

other threads must know how to deal with the data struc-
ture’s state, after the interrupted operation’s updates of the
thread that crashed. As a consequence, lock-free data struc-
tures always keep memory in a consistent state [20]. This
property is especially interesting in persistent algorithms,
as it helps recovery after a crash. A common category of
primitives often used in lock-free programs are Read-Modify-
Write (RMW) instructions. RMWs are atomic instructions
that modify and return the contents of a specified memory
address atomically. RMWs are used to implement a variety
of synchronization primitives. In lock-free data structures,
they provide the mechanism by which threads can atom-
ically modify a data structure, such that before and after
the modification, a consistent state is reached. On a lower
level, cache coherence messages are one of the mechanisms
responsible for making RMW instructions work properly in
directory-based multi-processor systems.

2.3 Cache coherence messages

Cache coherence is a prominent concern in multi-processor
systems, where cores can store and modify copies of shared
data in their private cache. These copies of data shared are
kept coherent with each other using a coherence protocol.
Coherence controllers such as the cache and memory con-
trollers maintain cache line states and exchange messages
to maintain coherence. Coherence protocols are typically
named after cache lines states. For example, the MSI pro-
tocol allows cache lines to be either in Modified (M) state
in one cache, Shared (S) across multiple caches or Invalid
(I) when not present in a cache. These protocols can have
additional states, e.g, MOESI with Owned (O) and Exclusive
(E) states, MESIF with Forward (F) state, etc.

Coherence protocols are classified into directory-based
and snooping protocols. Snooping protocols rely on a shared
bus for maintaining coherence which comes with scalability
issues. Directory-based protocols are designed for scalability
and are used to achieve coherence across different nodes
in a NUMA system. In directory-based coherence protocols,
each node has its own directory that offers a central view
of the states of the lines that belong to it. Consequently,
the controller within every node can effectively determine
the necessary messages to send for any given request, en-
suring the requested cache line is coherent throughout the
system. These messages serve to update cache-line states
and exchange relevant cache-line data among the nodes. The
protocol is usually proprietary leading to variations in func-
tionality and performance among different vendors and CPU
models. It is not limited to only be implemented on CPUs.

2.4 Cache coherent accelerator platforms

In recent years, systems have become more heterogeneous
by incorporating accelerator devices like GPUs, FPGAs and
other devices to speed up specific workloads. Traditionally,
these devices were often connected through a peripheral bus

PLayer: Expanding Coherence Protocol Stack with a Persistence Layer

Algorithm 1. Persistent enqueue example. The red instruc-
tions are not needed with PLayer.

1 | void enq(T value)

2 Node* node = new Node(value);

3 BARRIER (node);

4 while (true)

5 Node* last = tail.load();

6 Node* next = last->next.load();

7 if (last == tail.load())

8 if (next == nullptr)

9 if (last->next.CAS(next, node))
10 BARRIER(&last->next);

11 tail.CAS(last, node); return;
12 else

13 BARRIER(&last->next);

14 tail.CAS(last, next);

such as PCle. Nevertheless, another approach that started
gaining traction recently, is to connect accelerators in a
cache-coherent manner. Many approaches exist to connect
accelerators coherently, including CXL [2], MPSoCs such as
Xilinx’s Zynq [41], etc. Some of these options offer symmetric
protocols which allow both CPUs and accelerators to track
cache lines ownership and send cache control messages. As
a result, the accelerator can manage its own memory, and
generate coherence messages as opposed to being controlled
by the CPU. This opens up the possibility of many differ-
ent algorithms, and therefore, we will focus on symmetrical
protocols.

2.4.1 CXL. CXL is an industry standard for connecting
CPUs to accelerators, I0-devices and memory [2], which
has been recently announced. For accelerator devices, it al-
lows coherent memory access between the CPU and the
accelerator device. In particular, CXL 3.0 is a symmetric pro-
tocol, which makes it suitable for implementing hardware-
accelerated memory management for persistence and re-
coverability, without relying on software support. CXL 3.0,
however, is still not commercially available.

2.4.2 Enzian. Enzian [11] is a research computer devel-
oped by the Systems Group at ETH Zurich. It features a
ThunderX CPU with 48 ARMv8.1 cores and a Xilinx CVU9P
FPGA. The CPU and the FPGA are connected through the
native cache coherent interconnect of the ThunderX CPU,
utilizing the Enzian Coherent Interconnect (ECI) protocol,
which is mostly based on the MOESI-protocol. Enzian is a
symmetric coherent platform where each node is responsi-
ble for maintaining coherence of the memory attached to it.
Enzian’s FPGA maintains a directory controller (DC) which
implements the coherence protocol and allows user logic on
FPGA to directly access CPU memory, change cache lines’
states, trigger inter-processor interrupts, etc. The DC on the

DIMES ’23, October 23, 2023, Koblenz, Germany

CPU FPGA

ECI Directory Controller

LI

Persistence Layer

AX| = Read/write requests

LCL = Clean requests/ Memory Controller
responses

ECI = coherence messages

Figure 2. PLayer architecture. PLayer interacts with the DC
to orchestrate CPU’s access to memory and transparently
provide persistence guarantees to software on CPU.

FPGA exposes an AXI (Advanced eXtensible Interface) inter-
face to access the FPGA attached memory. It also provides a
simplified local (LCL) request-acknowledge interface for user
logic on the FPGA to interact with the coherence protocol.
Through this interface, user logic on the FPGA can clean
and invalidate FPGA-homed cache lines that are cached in
the CPU’s LLC. As a result, user logic does not have to keep
track of cache line states and can implement a much simpler
protocol, while the DC maintains coherence.

These capabilities make this system ideal for exploring
the possibilities of using cache-coherent accelerators for
implementing persistence in hardware.

3 PLayer Design

PLayer guarantees persistence for lock-free data structures,
by ensuring a consistent state [5, 23], using the hardware
with minimal software support. Figure 2 shows the system’s
overview. We place the program’s memory on the FPGA
side, such that the FPGA manages its persistence. Whenever
the CPU’s last-level cache (LLC) wants to access a cache
line homed on the FPGA, it sends a coherence message to
the FPGA’s DC through ECL For most applications, the DC
would be connected directly to the FPGA-attached memory
and provide coherent access. We introduce a persistence
layer that is located between the DC and the memory con-
troller on the FPGA. This layer can observe CPU upgrade
requests and orchestrate access to FPGA memory (AXI). It
can also interact with the coherence protocol through the
DC’s local request-acknowledge interface by issuing clean
and invalidate requests for FPGA lines cached in the CPU’s
LLC.

Algorithm 1 presents a code snippet of an enqueue opera-
tion of a durable lock-free queue [18]. The BARRIERs in red
represent the explicit writebacks and fences the user must
invoke in normal execution. However, with the existence
of PLayer, these barriers (and reasoning about their correct-
ness), can be omitted, since they are managed by PLayer.

DIMES ’°23, October 23, 2023, Koblenz, Germany

We explain the PLayer protocol design through an exam-
ple execution of a simple durable lock-free queue [18].

3.1 Initialization

First, the persistent data-structure needs to load PLayer and
then allocate the data structure on the FPGA address space.
Currently, this is done by mmaping a region of memory in the
FPGA address space. Whenever the CPU accesses this region,
the FPGA would receive necessary coherence messages from
the CPU’s LLC. We expect the platform [11] to allow explicit
memory allocation/deallocation in the future.

3.2 Local node preparation

Before a thread inserts a new node into the data structure,
it prepares it locally (Algorithm 1, line 2). These node ma-
nipulations are done by ordinary write instructions in the
CPU’s cache. At this point, the node is not accessible by
other threads and this data does not have to be persisted
yet. Eventually, the thread will issue a read-modify-write
(RMW) instruction to atomically modify the pointer of the
last node in the lock-free queue to point to the new node
(Algorithm 1, line 9). As soon as this operation takes effect,
the node is indeed part of the data structure. Therefore, the
node must be persisted before the node is inserted into the
data structure. Not persisting the node in the correct order
would create non-linearizable histories [18].

To accomplish this, PLayer has to keep track of lines that
are modified in the CPU’s LLC and persist them before the
node gets inserted into the queue. Since the data structure is
allocated on the FPGA memory space, the FPGA gets notified
of each cache line accessed by the CPU during the node
creation process. That is, the FPGA would receive an upgrade-
to-Exclusive request for each cache line that is cached by the
CPU in its LLC. This request can be observed by PLayer
which then provides access to the data thereby allowing
the DC to acknowledge the upgrade request. However, to
guarantee that it gets the relevant node’s dirty cache lines
from the CPU’s LLC, immediately after the upgrade request,
PLayer issues a clean request to the DC to downgrade the
line from Exclusive to Shared-state in the CPU’s LLC. This is
shown in part 1 of Figure 3 and PLayer does this for every
upgrade request from the CPU.

When the CPU receives the upgrade acknowledgement
from the FPGA, it modifies the cache line in its cache, and
when the CPU receives the downgrade request from the
FPGA, it responds with the dirty data. The dirty data is
then observed by PLayer and persisted. This way, the FPGA
persists all data written by the CPU to the node.

3.3 Insert

As the thread proceeds to insert the node it prepared locally,
into the queue, it needs to atomically modify the next-pointer
of the last node in the queue to point to the node it wants

Richard Braun, Abishek Ramdas, Michal Friedman, and Gustavo Alonso

chu FPGA
| recgy; _
1 o (% V:INVALID [x]: Read cache fine for modifying
RES[x]: Cache line data -
X : EXCLUSIVE & - "
I&EQ[X]: Cache line downgrade to SHA
2 REQIvCy]: Execute RMwW
’ RES[x]: - ‘
X: SHARED ESIX]: Cache line downgrade to SHARE,
RES[vCy]: RMW result
M v

Figure 3. PLayer protocol: Sequence of coherence messages
exchanged between the CPU and FPGA.

to insert. To achieve this atomically, the CPU issues a read-
modify-write (RMW) on the next-pointer of the last node
in the data structure (Algorithm 1, line 9). Upon executing
the RMW, the FPGA gets a special coherence request from
the CPU’s LLC. PLayer intercepts this request and holds off
responding to it until all responses to previously issued clean
requests are received, as shown in part 2 of Figure 3. This
allows PLayer to ensure that all modified data in CPU’s LLC
are persisted before allowing the CPU to atomically modify
the next-pointer.

Note that, before the CPU executes the RMW instruction
on a particular address, it cannot have the cache-line in
Exclusive or Modified states. In these cases, the FPGA has the
cache-line in an Invalid-state, and thus the CPU performs the
RMW instruction locally in its own cache, without notifying
the FPGA. Therefore, the invariant we preserve is that after
every RMW instruction, the cache line the CPU operates on
remains in an Invalid or Shared state on the CPU side. When a
RMW instruction is executed on the CPU side, assuming the
cache line is initially in Invalid or Shared state, the FPGA gets
a message requesting the execution of the RMW operation at
the FPGA. Consequently, the FPGA executes the operation
in its own memory and sends an acknowledgment for the
RMW instruction. Therefore, after a RMW instruction, the
cache line remains in its previous state on the CPU.

3.4 Update and delete

Updates or deletes to nodes also follow the same protocol as
inserting new nodes; any updates made in the CPU’s LLC are
tracked and persisted and atomic RMW coherence requests
(to modify the next-pointer) are delayed until all the modified
data using normal writes is persisted.

3.5 Read

The CPU can read data from the data structure through the
standard read instruction. If the data is cached in the CPU, it

PLayer: Expanding Coherence Protocol Stack with a Persistence Layer

is safe to read since PLayer has already persisted this data
before. If the data is not cached in CPU’s LLC, PLayer would
observe an upgrade request and can provide the most up-
to-date value for the data from the persistent memory in a
Shared state. Having a line in a Shared state does not change
the PLayer protocol: The cache line is already clean. Finally,
since PLayer does not invalidate the cache line, it does not
affect the temporal locality for subsequent reads.

3.6 Recovery

Each time the application is launched, it locates the data
from the previous execution and traverses the data structure
to locate all the reachable nodes. This step is necessary to
prevent a memory leak caused by node data, which is already
persisted, but not part of the data structure. Furthermore,
the application needs to be aware of the existing nodes to
avoid running at the risk of overwriting them.

4 Implementation

In the previous sections, we explained the persistence layer
protocol. In this section, we will explain the protocol’s im-
plementation on the available platform we used, Enzian [11].
This protocol can be adjusted, in the future, to CXL platforms
and be implemented inside the CXL’s coherence manager.

The FPGA’s DC exposes an AXI interface to access the
FPGA memory (Figure 2). Any upgrade or atomic RMW
request from the CPU can be observed through the AXI’s
read-request channel (with side-band signals distinguishing
upgrades and RMW requests). Responses to these requests
are issued through the AXI read-response channel along with
cache line data. Dirty data that is downgraded from the
CPU’s LLC, on the other hand, can be observed through the
AXT’s write-request channel. Once dirty data is persisted, an
acknowledgment can be sent to the DC through the AXI’s
write-response channel.

Moreover, the DC also exposes local request and response
channels (indicated by LCL in Figure 2) where user logic on
the FPGA can issue clean or invalidate requests and receive
responses upon the operation’s completion. In a system with-
out the persistence layer, the DC’s AXI interface is connected
directly to the memory controller’s AXI interface and the
local interfaces are not used.

With the persistence layer, read requests (for upgrading
or RMWs data) from the DC are served by the memory con-
troller through the persistence layer. This allows the persis-
tence layer to observe the cache line address being upgraded
and issue a clean request to the DC through its local interface.
Write requests (for downgraded data) from the DC, with dirty
data cleaned from CPU’s LLC, are also served by the mem-
ory controller through the persistence layer. As each clean
operation completes, the DC sends an acknowledgment to
the persistence layer, allowing it to keep track of the number
of outstanding clean operations.

DIMES ’23, October 23, 2023, Koblenz, Germany

Eventually, when an atomic RMW request arrives on the
AXI read-request channel, the persistence layer can delay
this request from being issued to the memory controller until
there are no outstanding clean operations. This ensures that
any dirty data from the CPU’s LLC is persisted before, e.g.,
the node gets added to the lock-free data structure.

The persistence layer has to be designed with enough
outstanding DC and memory transactions to saturate both
ECI and memory bandwidth. Such a highly concurrent sys-
tem can suffer from protocol deadlocks if not properly im-
plemented. For example, when the protocol delays a RMW
request until all the cleans’ acknowledgements arrive, a dead-
lock can occur if an acknowledgement is stuck behind the
stalled RMW request. This is avoided by having independent
AXI and local channels that guarantee that an acknowledge-
ment for clean will not arrive in the AXI read-request chan-
nel. Other deadlocks due to limited FPGA resources, would
have to be considered as part of the implementation.

4.1 Software support

We aim to avoid having to change application code as much
as possible, as demonstrated in Algorithm 1. It turns out that,
while most of the persistence handling can, in fact, be done
in hardware, some software support is still required.

Concretely, we still need software support for allocating
the data structure in the FPGA memory space, to get the
necessary coherence-messages from the CPU. A dedicated
driver exposes the FPGA’s memory and allows virtual to
physical address translation. Therefore, it should be initially
allocated on the FPGA.

Secondly, for being able to recover after a crash, the ap-
plication needs to know where the data structure resides in
the FPGA memory space, and which parts of it hold useful
data, to prevent overwriting useful data. This is achieved by
always allocating the data structure root in the same place
and providing a traversing method, which traverses all the
reachable nodes. From the root, the application can traverse
the data structure, to find all nodes that are currently part of
it. If the allocator supports marking allocated space, the appli-
cation can add the traversed nodes to the allocator-directory.
Otherwise, the nodes found can be reallocated [19]. In any
case, after a recovery, only nodes which are part of the data
structure will be marked in the allocator. This way, persistent
memory leaks are prevented.

4.2 Persistent storage

As we allocate the data structure in the FPGA memory space,
we need a way of storing data on the FPGA side, in a per-
sistent manner. Because of the frequent writes and their
byte-level granularity, we recommend using Non-Volatile
Main Memory (NVMM), such as 3D X-point. This way, we
expect to see the best performance. However, there is noth-
ing preventing the use of block devices such as SSDs for
persistent storage.

DIMES ’°23, October 23, 2023, Koblenz, Germany

4.3 Proof of concept

For verifying that the proposed protocol works, we con-
ducted several experiments. We used a C program running
on a Soft-CPU on the FPGA to decode and respond to cache-
coherence messages sent by the CPU. We executed RMW in-
structions on memory addresses in the FPGA memory space
and inferred the relevant ECI message formats and protocol
behavior. A similar analysis was done for the downgrade-
procedure of cache-lines. The inferred ECI protocol invari-
ants support our PLayer protocol. However, the full afore-
mentioned protocol is still not fully implemented on the Soft-
CPU. We still need to combine everything together. More-
over, for further evaluation of the protocol under maximum
load, a hardware implementation is required.

5 Optimizations
5.1 DRAM read-cache

In this variant, the FPGA both manages a persistent replica
on a persistent storage medium, such as an SSD or NVMM,
and a volatile replica in DRAM, similarly to Mirror [19]. This
solution benefits from DRAM’s low access latency while
using a slower device, such as an SSD, for persistent storage.

5.2 Aggregating cache line downgrade requests

Instead of directly following up each response to a cache-line
upgrade request by the CPU (e.g., as the result of node prepa-
ration) with a downgrade request, we aggregate them until
an RMW instruction is signaled to the FPGA. At this point,
the FPGA can issue a downgrade request to all cache lines
in Exclusive or Modified state. While this variant requires
more bookkeeping on the FPGA side, it prevents unneces-
sary, repeated up- and downgrading of cache lines. This,
in turn, can substantially reduce the number of CPU cache
misses. Depending on the frequency of the described issue,
it could make sense to choose this variant over handling the
upgraded cache lines as described in Section 3.2.

5.3 Exploiting knowledge about the data structure

When a RMW-instruction is executed, the FPGA needs to
pull all cache-line data. For some data structures, it might
be feasible to exploit data structure knowledge on the FPGA
side, and send only the clean requests that are relevant to a
particular RMW instruction. In conjunction with Section 5.2,
the amount of cache-lines to be downgraded upon receiving
a RMW-instruction can be substantially reduced.

6 Related Work

So far, mainly persistence software solutions were proposed.
The scope spans from hand-tuned constructions [8, 16, 18,
31] which are the most optimized ones to general construc-
tions [7, 10, 15, 17, 19, 22, 23, 30, 34, 38—40]. General con-
structions also include transactions and different persistent
logging techniques [12, 13]. Ramalhete et al. [33] present two

Richard Braun, Abishek Ramdas, Michal Friedman, and Gustavo Alonso

algorithms for persistent concurrent transactions in the form
of user space libraries that offer transactional memory se-
mantics. They achieve the lower bound in terms of memory
fences needed [14]. By implementing persistent snapshots,
this solution provides weaker persistence guarantees than
our work, while being applicable to not just lock-free data
structures.

Bhardwaj et al. [6] propose using cache-coherent acceler-
ators to implement write-ahead logging in hardware. The
authors propose this as a solution for forthcoming commer-
cial cache-coherent accelerators, such as CXL compatible
devices. Together with a software library included in the
application, the cache-coherent accelerator implements per-
sistent snapshot semantics. Compared to our solution, the
proposed hardware accelerated snapshotting does not work
in a concurrent setting, without having to serialize all threads
for taking a persistent snapshot. It is, however, more general,
since it is not just applicable to lock-free data structures.

Ogleari at al. [32] propose a hardware mechanism for
undo and redo logging to avoid flushing, by making the logs
uncacheable. However, in some cases, a forced write-back
mechanism is used for correctness, and software support is
required. Moreover, is was only implemented on a simulator.

eADR from Intel is a hardware-mechanism that, in the
event of a power-failure, makes sure that all data from the
CPU’s caches are written to NVMM [1]. This has several
advantages compared to traditional software-mechanisms,
such as flushing, because the application does not have to
wait for these operations to complete, to guarantee correct-
ness. However, with eADR, write buffers are still volatile.
Compared to PLayer, eADR still needs explicit fences, e.g.,
to ensure that local node data hits NVMM before the corre-
sponding node gets inserted. PLayer avoids this problem by
pulling the local data from the CPU, before modifying the
data structure state.

7 Future Work and Conclusions

We plan to extend Player into a real hardware implementa-
tion on Enzian [11]. Then, we will evaluate our hardware-
based approach against the state-of-the-art, software trans-
formations and measure the real trade-offs.

With the upcoming, commercially available CXL-enabled
CPUs and accelerators, developing a prototype based on
CXL will become feasible. In this context, evaluating the
requirements of our persistence layer against what the CXL
protocol offers will offer interesting insights.

With our proposed hardware-accelerated persistence layer
for lock-free data structures, we provide a general solution
for making lock-free data structures persistent. The required
application-code changes are minimal. Most notably, it does
not require any changes to the data structure code itself and
lets the hardware handle its persistence.

PLayer: Expanding Coherence Protocol Stack with a Persistence Layer

References

(1]

(9]

(10]

(12]

(13]

(14]

(15]

(16]

(17]

[n.d.]. eADR: New Opportunities for Persistent Memory Appli-
cations. https://www.intel.com/content/www/us/en/developer/
articles/technical/eadr-new-opportunities-for-persistent-memory-
applications.html

Accessed 2023. Compute Express Link.
computeexpresslink.org/.

Accessed 2023. CrossBar 3D ReRAM. https://www.crossbar-inc.com/
products/high-density-memory/.

Accessed 2023. Intel® Optane™ PMem. https://www.intel.com/
content/www/us/en/products/details/memory-storage/optane-dc-
persistent-memory.html.

Naama Ben-David, Michal Friedman, and Yuanhao Wei. 2022. Survey
of Persistent Memory Correctness Conditions. https://doi.org/10.
48550/arXiv.2208.11114 arXiv:2208.11114 [cs].

Ankit Bhardwaj, Todd Thornley, Vinita Pawar, Reto Achermann, Gerd
Zellweger, and Ryan Stutsman. 2022. Cache-coherent accelerators
for persistent memory crash consistency. In Proceedings of the 14th
ACM Workshop on Hot Topics in Storage and File Systems. ACM, Virtual
Event, 37-44. https://doi.org/10.1145/3538643.3539752

Dhruva R Chakrabarti, Hans-J] Boehm, and Kumud Bhandari. 2014.
Atlas: Leveraging locks for non-volatile memory consistency, Vol. 49.
ACM,, 433-452.

Shimin Chen and Qin Jin. 2015. Persistent b+-trees in non-volatile
main memory. 8,7 (2015), 786-797.

Youmin Chen, Youyou Lu, Fan Yang, Qing Wang, Yang Wang, and
Jiwu Shu. 2020. FlatStore: An Efficient Log-Structured Key-Value Storage
Engine for Persistent Memory. 1077-1091.

Joel Coburn, Adrian Caulfield, Ameen Akel, Laura M. Grupp, Rajesh K.
Gupta, Ranjit Jhala, and Steven Swanson. 2011. NV-Heaps: Making
Persistent Objects Fast and Safe with Next-Generation, Non-Volatile
Memories. In asplos.

David Cock, Abishek Ramdas, Daniel Schwyn, Michael Giardino,
Adam Turowski, Zhenhao He, Nora Hossle, Dario Korolija, Melissa
Licciardello, Kristina Martsenko, Reto Achermann, Gustavo Alonso,
and Timothy Roscoe. 2022. Enzian: an open, general, CPU/FPGA
platform for systems software research. In Proceedings of the 27th
ACM International Conference on Architectural Support for Program-
ming Languages and Operating Systems (ASPLOS °22). Association
for Computing Machinery, New York, NY, USA, 434-451. https:
//doi.org/10.1145/3503222.3507742

Nachshon Cohen, David T. Aksun, Hillel Avni, and James R. Larus. 2019.
Fine-Grain Checkpointing with In-Cache-Line Logging. In Proceedings
of the Twenty-Fourth International Conference on Architectural Support
for Programming Languages and Operating Systems (Providence, RI,
USA) (ASPLOS °19). Association for Computing Machinery, New York,
NY, USA, 441-454. https://doi.org/10.1145/3297858.3304046
Nachshon Cohen, Michal Friedman, and James R Larus. 2017. Efficient
logging in non-volatile memory by exploiting coherency protocols,
Vol. 1. ACM, 67.

Nachshon Cohen, Rachid Guerraoui, and Igor Zablotchi. 2018. The
Inherent Cost of Remembering Consistently. In Proceedings of the 30th
on Symposium on Parallelism in Algorithms and Architectures (Vienna,
Austria) (SPAA ’18). Association for Computing Machinery, New York,
NY, USA, 259-269. https://doi.org/10.1145/3210377.3210400
Andreia Correia, Pascal Felber, and Pedro Ramalhete. 2018. Romulus:
Efficient Algorithms for Persistent Transactional Memory. ACM, 271-
282.

Tudor David, Aleksandar Dragojevic, Rachid Guerraoui, and Igor
Zablotchi. 2018. Log-Free Concurrent Data Structures.

Michal Friedman, Naama Ben-David, Yuanhao Wei, Guy E. Blelloch,
and Erez Petrank. 2021. NVTraverse: In NVRAM Data Structures,
the Destination is More Important than the Journey. arXiv. http:
//arxiv.org/abs/2004.02841 arXiv:2004.02841 [cs].

https://www.

(18]

[19]

[20]

[21]
[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

DIMES ’23, October 23, 2023, Koblenz, Germany

Michal Friedman, Maurice Herlihy, Virendra Marathe, and Erez Pe-
trank. 2018. A persistent lock-free queue for non-volatile memory.
In Proceedings of the 23rd ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming. ACM, Vienna Austria, 28—40.
https://doi.org/10.1145/3178487.3178490

Michal Friedman, Erez Petrank, and Pedro Ramalhete. 2021. Mirror:
making lock-free data structures persistent. In Proceedings of the 42nd
ACM SIGPLAN International Conference on Programming Language
Design and Implementation. ACM, Virtual Canada, 1218-1232. https:
//doi.org/10.1145/3453483.3454105

Maurice Herlihy and Nir Shavit. 2012. The Art of Multiprocessor Pro-
gramming, Revised Reprint (1st ed.). Morgan Kaufmann Publishers
Inc., San Francisco, CA, USA.

PMDK Intel. 2018. Persistent Memory Programming. https://pmem.io
Joseph Izraelevitz, Terence Kelly, and Aasheesh Kolli. 2016. Failure-
Atomic Persistent Memory Updates via JUSTDO Logging. In Proceed-
ings of the Twenty-First International Conference on Architectural Sup-
port for Programming Languages and Operating Systems (Atlanta, Geor-
gia, USA) (ASPLOS ’16). Association for Computing Machinery, New
York, NY, USA, 427-442. https://doi.org/10.1145/2872362.2872410
Joseph Izraelevitz, Hammurabi Mendes, and Michael L. Scott. 2016.
Linearizability of Persistent Memory Objects Under a Full-System-
Crash Failure Model. In Distributed Computing, Cyril Gavoille and
David Ilcinkas (Eds.). Vol. 9888. Springer Berlin Heidelberg, Berlin,
Heidelberg, 313-327. https://doi.org/10.1007/978-3-662-53426-7_23
Series Title: Lecture Notes in Computer Science.

Aasheesh Kolli, Steven Pelley, Ali Saidi, Peter M Chen, and Thomas F
Wenisch. 2016. High-performance transactions for persistent memo-
ries. 399-411.

R Madhava Krishnan, Wook-Hee Kim, Xinwei Fu, Sumit Kumar Monga,
Hee Won Lee, Minsung Jang, Ajit Mathew, and Changwoo Min. 2021.
{TIPS}: Making Volatile Index Structures Persistent with {DRAM-
NVMM} Tiering. In 2021 USENIX Annual Technical Conference (USENIX
ATC 21). 773-787.

Se Kwon Lee, K Hyun Lim, Hyunsub Song, Beomseok Nam, and Sam H
Noh. 2017. WORT: Write Optimal Radix Tree for Persistent Memory
Storage Systems. 257-270.

Mengxing Liu, Mingxing Zhang, Kang Chen, Xuehai Qian, Yongwei
Wu, Weimin Zheng, and Jinglei Ren. 2017. DudeTM: Building durable
transactions with decoupling for persistent memory. ACM, 329-343.
Baotong Lu, Xiangpeng Hao, Tianzheng Wang, and Eric Lo. 2020. Dash:
Scalable Hashing on Persistent Memory. Proc. VLDB Endow. 13, 8 (apr
2020), 1147-1161. https://doi.org/10.14778/3389133.3389134
Virendra Marathe, Achin Mishra, Amee Trivedi, Yihe Huang, Faisal
Zaghloul, Sanidhya Kashyap, Margo Seltzer, Tim Harris, Steve Byan,
Bill Bridge, et al. 2018. Persistent memory transactions. arXiv preprint
arXiv:1804.00701 (2018).

Amirsaman Memaripour, Joseph Izraelevitz, and Steven Swanson. 2020.
Pronto: Easy and Fast Persistence for Volatile Data Structures. 789-806.
Faisal Nawab, Joseph Izraelevitz, Terence Kelly, Charles B. Morrey III,
Dhruva R. Chakrabarti, and Michael L. Scott. 2017. Dali: A Periodically
Persistent Hash Map. In 31st International Symposium on Distributed
Computing (DISC 2017) (Leibniz International Proceedings in Informatics
(LIPIcs), Vol. 91), Andréa W. Richa (Ed.). Schloss Dagstuhl-Leibniz-
Zentrum fuer Informatik, Dagstuhl, Germany, 37:1-37:16. https://doi.
org/10.4230/L1Plcs.DISC.2017.37

Matheus Almeida Ogleari, Ethan L. Miller, and Jishen Zhao. 2018.
Steal but No Force: Efficient Hardware Undo+Redo Logging for Per-
sistent Memory Systems. In 2018 IEEE International Symposium on

High Performance Computer Architecture (HPCA). 336-349. https:
//doi.org/10.1109/HPCA.2018.00037
Pedro Ramalhete, Andreia Correia, and Pascal Felber. 2021. Effi-

cient Algorithms for Persistent Transactional Memory. In Proceedings
of the 26th ACM SIGPLAN Symposium on Principles and Practice of

https://www.intel.com/content/www/us/en/developer/articles/technical/eadr-new-opportunities-for-persistent-memory-applications.html
https://www.intel.com/content/www/us/en/developer/articles/technical/eadr-new-opportunities-for-persistent-memory-applications.html
https://www.intel.com/content/www/us/en/developer/articles/technical/eadr-new-opportunities-for-persistent-memory-applications.html
https://www.computeexpresslink.org/
https://www.computeexpresslink.org/
https://www.crossbar-inc.com/products/high-density-memory/
https://www.crossbar-inc.com/products/high-density-memory/
https://www.intel.com/content/www/us/en/products/details/memory-storage/optane-dc-persistent-memory.html
https://www.intel.com/content/www/us/en/products/details/memory-storage/optane-dc-persistent-memory.html
https://www.intel.com/content/www/us/en/products/details/memory-storage/optane-dc-persistent-memory.html
https://doi.org/10.48550/arXiv.2208.11114
https://doi.org/10.48550/arXiv.2208.11114
https://doi.org/10.1145/3538643.3539752
https://doi.org/10.1145/3503222.3507742
https://doi.org/10.1145/3503222.3507742
https://doi.org/10.1145/3297858.3304046
https://doi.org/10.1145/3210377.3210400
http://arxiv.org/abs/2004.02841
http://arxiv.org/abs/2004.02841
https://doi.org/10.1145/3178487.3178490
https://doi.org/10.1145/3453483.3454105
https://doi.org/10.1145/3453483.3454105
https:// pmem.io
https://doi.org/10.1145/2872362.2872410
https://doi.org/10.1007/978-3-662-53426-7_23
https://doi.org/10.14778/3389133.3389134
https://doi.org/10.4230/LIPIcs.DISC.2017.37
https://doi.org/10.4230/LIPIcs.DISC.2017.37
https://doi.org/10.1109/HPCA.2018.00037
https://doi.org/10.1109/HPCA.2018.00037

DIMES ’°23, October 23, 2023, Koblenz, Germany

(34]

(35

—

(36]

(37]

(38]

(39]

Parallel Programming (Virtual Event, Republic of Korea) (PPoPP °21).
Association for Computing Machinery, New York, NY, USA, 1-15.
https://doi.org/10.1145/3437801.3441586

Pedro Ramalhete, Andreia Correia, Pascal Felber, and Nachshon Cohen.
2019. OneFile: A Wait-Free Persistent Transactional Memory.
Thomas Shull, Jian Huang, and Josep Torrellas. 2019. AutoPersist: an
easy-to-use Java NVM framework based on reachability. In Proceedings
of the 40th ACM SIGPLAN Conference on Programming Language Design
and Implementation. ACM, 316-332.

Viking Technology. 2017. Persistent Memory Technologies.
//www.vikingtechnology.com/products/nvdimm/

Shivaram Venkataraman, Niraj Tolia, Parthasarathy Ranganathan,
Roy H Campbell, et al. 2011. Consistent and Durable Data Structures
for Non-Volatile Byte-Addressable Memory., Vol. 11. 61-75.

Haris Volos, Andres Jaan Tack, and Michael M Swift. 2011. Mnemosyne:
Lightweight persistent memory, Vol. 39. ACM, 91-104.

Yuanhao Wei, Naama Ben-David, Michal Friedman, Guy E. Blelloch,
and Erez Petrank. 2021. FIiT: A Library for Simple and Efficient Persis-
tent Algorithms. http://arxiv.org/abs/2108.04202 arXiv:2108.04202

https:

Richard Braun, Abishek Ramdas, Michal Friedman, and Gustavo Alonso

[40]

[41]
[42]
[43]
[44]

[45]

[es].

Haosen Wen, Wentao Cai, Mingzhe Du, Louis Jenkins, Benjamin
Valpey, and Michael L. Scott. 2021. A Fast, General System for
Buffered Persistent Data Structures. In Proceedings of the 50th In-
ternational Conference on Parallel Processing (ICPP °21). Association
for Computing Machinery, New York, NY, USA, Article 73, 11 pages.
https://doi.org/10.1145/3472456.3472458

Xilinx. 2022. Xilinx Zynq Ultrascale+ MPSoC.
com/products/silicon-devices/soc/zynq-ultrascale-mpsoc.html

Jian Xu and Steven Swanson. 2016. {NOVA}: A Log-structured File
System for Hybrid Volatile/Non-volatile Main Memories. 323-338.
Yi Xu, Joseph Izraelevitz, and Steven Swanson. 2021. Clobber-NVM:
Log Less, Re-Execute More. 346-359.

Pantea Zardoshti, Tingzhe Zhou, Yujie Liu, and Michael Spear. 2019.
Optimizing Persistent Memory Transactions. IEEE, 219-231.

Yoav Zuriel, Michal Friedman, Gali Sheffi, Nachshon Cohen, and Erez
Petrank. 2019. Efficient Lock-Free Durable Sets.

https://www.xilinx.

https://doi.org/10.1145/3437801.3441586
https://www.vikingtechnology.com/products/nvdimm/
https://www.vikingtechnology.com/products/nvdimm/
http://arxiv.org/abs/2108.04202
https://doi.org/10.1145/3472456.3472458
https://www.xilinx.com/products/silicon-devices/soc/zynq-ultrascale-mpsoc.html
https://www.xilinx.com/products/silicon-devices/soc/zynq-ultrascale-mpsoc.html

	Abstract
	1 Introduction
	2 Background
	2.1 Non-Volatile memory and persistent programs
	2.2 Lock-Freedom and Read-Modify-Write instructions
	2.3 Cache coherence messages
	2.4 Cache coherent accelerator platforms

	3 PLayer Design
	3.1 Initialization
	3.2 Local node preparation
	3.3 Insert
	3.4 Update and delete
	3.5 Read
	3.6 Recovery

	4 Implementation
	4.1 Software support
	4.2 Persistent storage
	4.3 Proof of concept

	5 Optimizations
	5.1 DRAM read-cache
	5.2 Aggregating cache line downgrade requests
	5.3 Exploiting knowledge about the data structure

	6 Related Work
	7 Future Work and Conclusions
	References

